Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -153,33 +153,6 @@ def format_description(description, breed):
|
|
153 |
|
154 |
return formatted_description
|
155 |
|
156 |
-
# async def predict_single_dog(image):
|
157 |
-
# return await asyncio.to_thread(_predict_single_dog, image)
|
158 |
-
|
159 |
-
# def _predict_single_dog(image):
|
160 |
-
# image_tensor = preprocess_image(image)
|
161 |
-
# with torch.no_grad():
|
162 |
-
# output = model(image_tensor)
|
163 |
-
# logits = output[0] if isinstance(output, tuple) else output
|
164 |
-
# probabilities = F.softmax(logits, dim=1)
|
165 |
-
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
166 |
-
# top1_prob = topk_probs[0][0].item()
|
167 |
-
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
168 |
-
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
169 |
-
# return top1_prob, topk_breeds, topk_probs_percent
|
170 |
-
|
171 |
-
|
172 |
-
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
173 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
174 |
-
# dogs = []
|
175 |
-
# for box in results.boxes:
|
176 |
-
# if box.cls == 16: # COCO 資料集中狗的類別是 16
|
177 |
-
# xyxy = box.xyxy[0].tolist()
|
178 |
-
# confidence = box.conf.item()
|
179 |
-
# cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
180 |
-
# dogs.append((cropped_image, confidence, xyxy))
|
181 |
-
# return dogs
|
182 |
-
|
183 |
|
184 |
async def predict_single_dog(image):
|
185 |
image_tensor = preprocess_image(image)
|
@@ -194,6 +167,33 @@ async def predict_single_dog(image):
|
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
@@ -212,13 +212,17 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
|
212 |
for box, confidence in nms_boxes:
|
213 |
x1, y1, x2, y2 = box
|
214 |
w, h = x2 - x1, y2 - y1
|
215 |
-
x1 = max(0, x1 - w * 0.
|
216 |
-
y1 = max(0, y1 - h * 0.
|
217 |
-
x2 = min(image.width, x2 + w * 0.
|
218 |
-
y2 = min(image.height, y2 + h * 0.
|
219 |
cropped_image = image.crop((x1, y1, x2, y2))
|
220 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
221 |
|
|
|
|
|
|
|
|
|
222 |
return dogs
|
223 |
|
224 |
def non_max_suppression(boxes, iou_threshold):
|
@@ -291,16 +295,16 @@ async def process_single_dog(image):
|
|
291 |
}
|
292 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
293 |
|
|
|
294 |
# async def predict(image):
|
295 |
# if image is None:
|
296 |
-
# return "Please upload an image to start.", None, gr.update(visible=False
|
|
|
297 |
# try:
|
298 |
# if isinstance(image, np.ndarray):
|
299 |
# image = Image.fromarray(image)
|
300 |
-
|
301 |
-
|
302 |
-
# if len(dogs) <= 1:
|
303 |
-
# return await process_single_dog(image)
|
304 |
|
305 |
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
306 |
# explanations = []
|
@@ -308,26 +312,28 @@ async def process_single_dog(image):
|
|
308 |
# annotated_image = image.copy()
|
309 |
# draw = ImageDraw.Draw(annotated_image)
|
310 |
# font = ImageFont.load_default()
|
311 |
-
|
312 |
-
# for i, (cropped_image,
|
313 |
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
314 |
# color = color_list[i % len(color_list)]
|
315 |
# draw.rectangle(box, outline=color, width=3)
|
316 |
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
317 |
-
|
318 |
-
#
|
|
|
319 |
# if top1_prob >= 0.5:
|
|
|
320 |
# description = get_dog_description(breed)
|
321 |
# formatted_description = format_description(description, breed)
|
322 |
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
323 |
-
# elif
|
324 |
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
325 |
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
326 |
# explanations.append(dog_explanation)
|
327 |
-
# buttons.extend([
|
328 |
# else:
|
329 |
-
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
330 |
-
|
331 |
# final_explanation = "\n\n".join(explanations)
|
332 |
# if buttons:
|
333 |
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
@@ -336,111 +342,25 @@ async def process_single_dog(image):
|
|
336 |
# "buttons": buttons,
|
337 |
# "show_back": True,
|
338 |
# "image": annotated_image,
|
339 |
-
# "is_multi_dog":
|
340 |
# "dogs_info": explanations
|
341 |
# }
|
342 |
-
# return
|
343 |
-
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
344 |
-
# buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
345 |
-
# buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
346 |
-
# gr.update(visible=True),
|
347 |
-
# initial_state)
|
348 |
# else:
|
349 |
# initial_state = {
|
350 |
# "explanation": final_explanation,
|
351 |
# "buttons": [],
|
352 |
# "show_back": False,
|
353 |
# "image": annotated_image,
|
354 |
-
# "is_multi_dog":
|
355 |
# "dogs_info": explanations
|
356 |
# }
|
357 |
-
# return final_explanation, annotated_image, gr.update(visible=False
|
358 |
-
# except Exception as e:
|
359 |
-
# error_msg = f"An error occurred: {str(e)}"
|
360 |
-
# print(error_msg) # 添加日誌輸出
|
361 |
-
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
362 |
-
|
363 |
|
364 |
-
# def show_details(choice, previous_output, initial_state):
|
365 |
-
# if not choice:
|
366 |
-
# return previous_output, gr.update(visible=True), initial_state
|
367 |
-
|
368 |
-
# try:
|
369 |
-
# breed = choice.split("More about ")[-1]
|
370 |
-
# description = get_dog_description(breed)
|
371 |
-
# formatted_description = format_description(description, breed)
|
372 |
-
|
373 |
-
# # 保存當前描述和原始按鈕狀態
|
374 |
-
# initial_state["current_description"] = formatted_description
|
375 |
-
# initial_state["original_buttons"] = initial_state.get("buttons", [])
|
376 |
-
|
377 |
-
# return formatted_description, gr.update(visible=True), initial_state
|
378 |
# except Exception as e:
|
379 |
-
# error_msg = f"An error occurred
|
380 |
# print(error_msg)
|
381 |
-
# return error_msg, gr.update(visible=
|
382 |
-
|
383 |
-
# def go_back(state):
|
384 |
-
# buttons = state.get("buttons", [])
|
385 |
-
# return (
|
386 |
-
# state["explanation"],
|
387 |
-
# state["image"],
|
388 |
-
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
389 |
-
# buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
390 |
-
# buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
391 |
-
# gr.update(visible=False), # 隱藏 back 按鈕
|
392 |
-
# state
|
393 |
-
# )
|
394 |
-
|
395 |
-
# with gr.Blocks() as iface:
|
396 |
-
# gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
397 |
-
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
398 |
-
|
399 |
-
# with gr.Row():
|
400 |
-
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
401 |
-
# output_image = gr.Image(label="Annotated Image")
|
402 |
-
|
403 |
-
# output = gr.Markdown(label="Prediction Results")
|
404 |
-
|
405 |
-
# with gr.Row():
|
406 |
-
# btn1 = gr.Button("View More 1", visible=False)
|
407 |
-
# btn2 = gr.Button("View More 2", visible=False)
|
408 |
-
# btn3 = gr.Button("View More 3", visible=False)
|
409 |
-
|
410 |
-
# back_button = gr.Button("Back", visible=False)
|
411 |
-
|
412 |
-
# initial_state = gr.State()
|
413 |
-
|
414 |
-
# input_image.change(
|
415 |
-
# predict,
|
416 |
-
# inputs=input_image,
|
417 |
-
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
418 |
-
# )
|
419 |
-
|
420 |
-
# for btn in [btn1, btn2, btn3]:
|
421 |
-
# btn.click(
|
422 |
-
# show_details,
|
423 |
-
# inputs=[btn, output, initial_state],
|
424 |
-
# outputs=[output, back_button, initial_state]
|
425 |
-
# )
|
426 |
-
|
427 |
-
# back_button.click(
|
428 |
-
# go_back,
|
429 |
-
# inputs=[initial_state],
|
430 |
-
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
431 |
-
# )
|
432 |
-
|
433 |
-
# gr.Examples(
|
434 |
-
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
435 |
-
# inputs=input_image
|
436 |
-
# )
|
437 |
-
|
438 |
-
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
439 |
-
|
440 |
-
# if __name__ == "__main__":
|
441 |
-
# iface.launch()
|
442 |
-
|
443 |
-
|
444 |
|
445 |
async def predict(image):
|
446 |
if image is None:
|
@@ -463,7 +383,9 @@ async def predict(image):
|
|
463 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
464 |
color = color_list[i % len(color_list)]
|
465 |
draw.rectangle(box, outline=color, width=3)
|
466 |
-
|
|
|
|
|
467 |
|
468 |
combined_confidence = detection_confidence * top1_prob
|
469 |
|
@@ -471,14 +393,23 @@ async def predict(image):
|
|
471 |
breed = topk_breeds[0]
|
472 |
description = get_dog_description(breed)
|
473 |
formatted_description = format_description(description, breed)
|
474 |
-
|
|
|
|
|
|
|
475 |
elif combined_confidence >= 0.2:
|
476 |
-
|
|
|
|
|
|
|
477 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
478 |
explanations.append(dog_explanation)
|
479 |
-
buttons.extend([f"Dog
|
480 |
else:
|
481 |
-
|
|
|
|
|
|
|
482 |
|
483 |
final_explanation = "\n\n".join(explanations)
|
484 |
if buttons:
|
|
|
153 |
|
154 |
return formatted_description
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
async def predict_single_dog(image):
|
158 |
image_tensor = preprocess_image(image)
|
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
171 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
+
# dogs = []
|
173 |
+
# boxes = []
|
174 |
+
# for box in results.boxes:
|
175 |
+
# if box.cls == 16: # COCO dataset class for dog is 16
|
176 |
+
# xyxy = box.xyxy[0].tolist()
|
177 |
+
# confidence = box.conf.item()
|
178 |
+
# boxes.append((xyxy, confidence))
|
179 |
+
|
180 |
+
# if not boxes:
|
181 |
+
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
182 |
+
# else:
|
183 |
+
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
184 |
+
|
185 |
+
# for box, confidence in nms_boxes:
|
186 |
+
# x1, y1, x2, y2 = box
|
187 |
+
# w, h = x2 - x1, y2 - y1
|
188 |
+
# x1 = max(0, x1 - w * 0.05)
|
189 |
+
# y1 = max(0, y1 - h * 0.05)
|
190 |
+
# x2 = min(image.width, x2 + w * 0.05)
|
191 |
+
# y2 = min(image.height, y2 + h * 0.05)
|
192 |
+
# cropped_image = image.crop((x1, y1, x2, y2))
|
193 |
+
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
194 |
+
|
195 |
+
# return dogs
|
196 |
+
|
197 |
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
|
|
212 |
for box, confidence in nms_boxes:
|
213 |
x1, y1, x2, y2 = box
|
214 |
w, h = x2 - x1, y2 - y1
|
215 |
+
x1 = max(0, x1 - w * 0.1)
|
216 |
+
y1 = max(0, y1 - h * 0.1)
|
217 |
+
x2 = min(image.width, x2 + w * 0.1)
|
218 |
+
y2 = min(image.height, y2 + h * 0.1)
|
219 |
cropped_image = image.crop((x1, y1, x2, y2))
|
220 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
221 |
|
222 |
+
# 如果只检测到一只狗,但置信度较低,添加整张图片作为备选
|
223 |
+
if len(dogs) == 1 and dogs[0][1] < 0.5:
|
224 |
+
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
225 |
+
|
226 |
return dogs
|
227 |
|
228 |
def non_max_suppression(boxes, iou_threshold):
|
|
|
295 |
}
|
296 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
297 |
|
298 |
+
|
299 |
# async def predict(image):
|
300 |
# if image is None:
|
301 |
+
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
302 |
+
|
303 |
# try:
|
304 |
# if isinstance(image, np.ndarray):
|
305 |
# image = Image.fromarray(image)
|
306 |
+
|
307 |
+
# dogs = await detect_multiple_dogs(image)
|
|
|
|
|
308 |
|
309 |
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
310 |
# explanations = []
|
|
|
312 |
# annotated_image = image.copy()
|
313 |
# draw = ImageDraw.Draw(annotated_image)
|
314 |
# font = ImageFont.load_default()
|
315 |
+
|
316 |
+
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
317 |
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
318 |
# color = color_list[i % len(color_list)]
|
319 |
# draw.rectangle(box, outline=color, width=3)
|
320 |
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
321 |
+
|
322 |
+
# combined_confidence = detection_confidence * top1_prob
|
323 |
+
|
324 |
# if top1_prob >= 0.5:
|
325 |
+
# breed = topk_breeds[0]
|
326 |
# description = get_dog_description(breed)
|
327 |
# formatted_description = format_description(description, breed)
|
328 |
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
329 |
+
# elif combined_confidence >= 0.2:
|
330 |
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
331 |
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
332 |
# explanations.append(dog_explanation)
|
333 |
+
# buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
334 |
# else:
|
335 |
+
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
|
336 |
+
|
337 |
# final_explanation = "\n\n".join(explanations)
|
338 |
# if buttons:
|
339 |
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
|
|
342 |
# "buttons": buttons,
|
343 |
# "show_back": True,
|
344 |
# "image": annotated_image,
|
345 |
+
# "is_multi_dog": len(dogs) > 1,
|
346 |
# "dogs_info": explanations
|
347 |
# }
|
348 |
+
# return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
|
|
|
|
|
|
|
|
|
|
349 |
# else:
|
350 |
# initial_state = {
|
351 |
# "explanation": final_explanation,
|
352 |
# "buttons": [],
|
353 |
# "show_back": False,
|
354 |
# "image": annotated_image,
|
355 |
+
# "is_multi_dog": len(dogs) > 1,
|
356 |
# "dogs_info": explanations
|
357 |
# }
|
358 |
+
# return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
|
|
|
|
|
|
|
|
|
|
359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
# except Exception as e:
|
361 |
+
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
362 |
# print(error_msg)
|
363 |
+
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
async def predict(image):
|
366 |
if image is None:
|
|
|
383 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
384 |
color = color_list[i % len(color_list)]
|
385 |
draw.rectangle(box, outline=color, width=3)
|
386 |
+
|
387 |
+
if len(dogs) > 1:
|
388 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
389 |
|
390 |
combined_confidence = detection_confidence * top1_prob
|
391 |
|
|
|
393 |
breed = topk_breeds[0]
|
394 |
description = get_dog_description(breed)
|
395 |
formatted_description = format_description(description, breed)
|
396 |
+
if len(dogs) == 1:
|
397 |
+
explanations.append(f"Breed: {breed}\n{formatted_description}")
|
398 |
+
else:
|
399 |
+
explanations.append(f"Dog {i+1}: Breed: {breed}\n{formatted_description}")
|
400 |
elif combined_confidence >= 0.2:
|
401 |
+
if len(dogs) == 1:
|
402 |
+
dog_explanation = f"Top 3 possible breeds:\n"
|
403 |
+
else:
|
404 |
+
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
405 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
406 |
explanations.append(dog_explanation)
|
407 |
+
buttons.extend([f"{'Dog ' + str(i+1) + ': ' if len(dogs) > 1 else ''}More about {breed}" for breed in topk_breeds[:3]])
|
408 |
else:
|
409 |
+
if len(dogs) == 1:
|
410 |
+
explanations.append("The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
|
411 |
+
else:
|
412 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
|
413 |
|
414 |
final_explanation = "\n\n".join(explanations)
|
415 |
if buttons:
|