import sqlite3 import gradio as gr from typing import Generator from dog_database import get_dog_description, dog_data from breed_health_info import breed_health_info from breed_noise_info import breed_noise_info from scoring_calculation_system import UserPreferences, calculate_compatibility_score from recommendation_html_format import format_recommendation_html, get_breed_recommendations from search_history import create_history_tab, create_history_component def create_custom_button_style(): return """ """ def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component): with gr.TabItem("Breed Recommendation"): with gr.Tabs(): with gr.Tab("Find by Criteria"): gr.HTML("""
BETA

Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!

🔬 Beta Feature: Our matching algorithm is continuously improving. Results are for reference only.
""") with gr.Row(): with gr.Column(): living_space = gr.Radio( choices=["apartment", "house_small", "house_large"], label="What type of living space do you have?", info="Choose your current living situation", value="apartment" ) yard_access = gr.Radio( choices=["no_yard", "shared_yard", "private_yard"], label="Yard Access Type", info="Available outdoor space", value="no_yard" ) exercise_time = gr.Slider( minimum=0, maximum=180, value=60, label="Daily exercise time (minutes)", info="Consider walks, play time, and training" ) exercise_type = gr.Radio( choices=["light_walks", "moderate_activity", "active_training"], label="Exercise Style", info="What kind of activities do you prefer?", value="moderate_activity" ) grooming_commitment = gr.Radio( choices=["low", "medium", "high"], label="Grooming commitment level", info="Low: monthly, Medium: weekly, High: daily", value="medium" ) with gr.Column(): size_preference = gr.Radio( choices=["no_preference", "small", "medium", "large", "giant"], label="Preference Dog Size", info="Select your preferred dog size - this will strongly filter the recommendations", value = "no_preference" ) experience_level = gr.Radio( choices=["beginner", "intermediate", "advanced"], label="Dog ownership experience", info="Be honest - this helps find the right match", value="beginner" ) time_availability = gr.Radio( choices=["limited", "moderate", "flexible"], label="Time Availability", info="Time available for dog care daily", value="moderate" ) has_children = gr.Checkbox( label="Have children at home", info="Helps recommend child-friendly breeds" ) children_age = gr.Radio( choices=["toddler", "school_age", "teenager"], label="Children's Age Group", info="Helps match with age-appropriate breeds", visible=False # 默認隱藏,只在has_children=True時顯示 ) noise_tolerance = gr.Radio( choices=["low", "medium", "high"], label="Noise tolerance level", info="Some breeds are more vocal than others", value="medium" ) def update_children_age_visibility(has_children): return gr.update(visible=has_children) has_children.change( fn=update_children_age_visibility, inputs=has_children, outputs=children_age ) gr.HTML(create_custom_button_style()) get_recommendations_btn = gr.Button( "Find My Perfect Match! 🔍", elem_id="find-match-btn" ) search_status = gr.HTML( '
🔍 Sniffing out your perfect furry companion...
', visible=False, elem_id="search-status-container" ) recommendation_output = gr.HTML( label="Breed Recommendations", visible=True, # 確保可見性 elem_id="recommendation-output" ) def on_find_match_click(*args): try: print("Starting breed matching process...") user_prefs = UserPreferences( living_space=args[0], yard_access=args[1], exercise_time=args[2], exercise_type=args[3], grooming_commitment=args[4], size_preference=args[5], experience_level=args[6], time_availability=args[7], has_children=args[8], children_age=args[9] if args[8] else None, noise_tolerance=args[10], space_for_play=True if args[0] != "apartment" else False, other_pets=False, climate="moderate", health_sensitivity="medium", barking_acceptance=args[10] ) recommendations = get_breed_recommendations(user_prefs, top_n=15) history_results = [{ 'breed': rec['breed'], 'rank': rec['rank'], 'overall_score': rec['final_score'], 'base_score': rec['base_score'], 'bonus_score': rec['bonus_score'], 'scores': rec['scores'] } for rec in recommendations] history_component.save_search( user_preferences={ 'living_space': args[0], 'yard_access': args[1], 'exercise_time': args[2], 'exercise_type': args[3], 'grooming_commitment': args[4], 'size_preference': args[5], 'experience_level': args[6], 'time_availability': args[7], 'has_children': args[8], 'children_age': args[9] if args[8] else None, 'noise_tolerance': args[10], 'search_type': 'Criteria' }, results=history_results ) return [ format_recommendation_html(recommendations, is_description_search=False), gr.update(visible=False) ] except Exception as e: print(f"Error in find match: {str(e)}") import traceback print(traceback.format_exc()) return ["Error getting recommendations", gr.HTML.update(visible=False)] def update_status_and_process(*args): return [ "", # 清空現有結果 gr.update(visible=True) ] get_recommendations_btn.click( fn=update_status_and_process, # 先執行狀態更新 outputs=[recommendation_output, search_status], queue=False # 確保狀態更新立即執行 ).then( # 然後執行主要處理邏輯 fn=on_find_match_click, inputs=[ living_space, yard_access, exercise_time, exercise_type, grooming_commitment, size_preference, experience_level, time_availability, has_children, children_age, noise_tolerance ], outputs=[recommendation_output, search_status] ) return { 'living_space': living_space, 'exercise_time': exercise_time, 'grooming_commitment': grooming_commitment, 'experience_level': experience_level, 'has_children': has_children, 'noise_tolerance': noise_tolerance, 'get_recommendations_btn': get_recommendations_btn, 'recommendation_output': recommendation_output, } # def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component): # with gr.TabItem("Breed Recommendation"): # with gr.Tabs(): # with gr.Tab("Find by Criteria"): # gr.HTML(""" #
# #
BETA
# #

# Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you! #

# #
# 🔬 # Beta Feature: Our matching algorithm is continuously improving. Results are for reference only. #
#
# """) # with gr.Row(): # with gr.Column(): # living_space = gr.Radio( # choices=["apartment", "house_small", "house_large"], # label="What type of living space do you have?", # info="Choose your current living situation", # value="apartment" # ) # yard_access = gr.Radio( # choices=["no_yard", "shared_yard", "private_yard"], # label="Yard Access Type", # info="Available outdoor space", # value="no_yard" # ) # exercise_time = gr.Slider( # minimum=0, # maximum=180, # value=60, # label="Daily exercise time (minutes)", # info="Consider walks, play time, and training" # ) # exercise_type = gr.Radio( # choices=["light_walks", "moderate_activity", "active_training"], # label="Exercise Style", # info="What kind of activities do you prefer?", # value="moderate_activity" # ) # grooming_commitment = gr.Radio( # choices=["low", "medium", "high"], # label="Grooming commitment level", # info="Low: monthly, Medium: weekly, High: daily", # value="medium" # ) # with gr.Column(): # size_preference = gr.Radio( # choices=["no_preference", "small", "medium", "large", "giant"], # label="Preference Dog Size", # info="Select your preferred dog size - this will strongly filter the recommendations", # value = "no_preference" # ) # experience_level = gr.Radio( # choices=["beginner", "intermediate", "advanced"], # label="Dog ownership experience", # info="Be honest - this helps find the right match", # value="beginner" # ) # time_availability = gr.Radio( # choices=["limited", "moderate", "flexible"], # label="Time Availability", # info="Time available for dog care daily", # value="moderate" # ) # has_children = gr.Checkbox( # label="Have children at home", # info="Helps recommend child-friendly breeds" # ) # children_age = gr.Radio( # choices=["toddler", "school_age", "teenager"], # label="Children's Age Group", # info="Helps match with age-appropriate breeds", # visible=False # 默認隱藏,只在has_children=True時顯示 # ) # noise_tolerance = gr.Radio( # choices=["low", "medium", "high"], # label="Noise tolerance level", # info="Some breeds are more vocal than others", # value="medium" # ) # def update_children_age_visibility(has_children): # return gr.update(visible=has_children) # has_children.change( # fn=update_children_age_visibility, # inputs=has_children, # outputs=children_age # ) # get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary") # recommendation_output = gr.HTML( # label="Breed Recommendations", # visible=True, # 確保可見性 # elem_id="recommendation-output" # ) # def on_find_match_click(*args): # try: # user_prefs = UserPreferences( # living_space=args[0], # yard_access=args[1], # exercise_time=args[2], # exercise_type=args[3], # grooming_commitment=args[4], # size_preference=args[5], # experience_level=args[6], # time_availability=args[7], # has_children=args[8], # children_age=args[9] if args[8] else None, # noise_tolerance=args[10], # space_for_play=True if args[0] != "apartment" else False, # other_pets=False, # climate="moderate", # health_sensitivity="medium", # barking_acceptance=args[10] # ) # recommendations = get_breed_recommendations(user_prefs, top_n=15) # history_results = [{ # 'breed': rec['breed'], # 'rank': rec['rank'], # 'overall_score': rec['final_score'], # 'base_score': rec['base_score'], # 'bonus_score': rec['bonus_score'], # 'scores': rec['scores'] # } for rec in recommendations] # history_component.save_search( # user_preferences={ # 'living_space': args[0], # 'yard_access': args[1], # 'exercise_time': args[2], # 'exercise_type': args[3], # 'grooming_commitment': args[4], # 'size_preference': args[5], # 'experience_level': args[6], # 'time_availability': args[7], # 'has_children': args[8], # 'children_age': args[9] if args[8] else None, # 'noise_tolerance': args[10], # 'search_type': 'Criteria' # }, # results=history_results # ) # return format_recommendation_html(recommendations, is_description_search=False) # except Exception as e: # print(f"Error in find match: {str(e)}") # import traceback # print(traceback.format_exc()) # return "Error getting recommendations" # get_recommendations_btn.click( # fn=on_find_match_click, # inputs=[ # living_space, # yard_access, # exercise_time, # exercise_type, # grooming_commitment, # size_preference, # experience_level, # time_availability, # has_children, # children_age, # noise_tolerance # ], # outputs=recommendation_output # ) # return { # 'living_space': living_space, # 'exercise_time': exercise_time, # 'grooming_commitment': grooming_commitment, # 'experience_level': experience_level, # 'has_children': has_children, # 'noise_tolerance': noise_tolerance, # 'get_recommendations_btn': get_recommendations_btn, # 'recommendation_output': recommendation_output, # }