import os import numpy as np import torch import torch.nn as nn import gradio as gr from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights from torchvision.ops import nms, box_iou import torch.nn.functional as F from torchvision import transforms from PIL import Image, ImageDraw, ImageFont, ImageFilter from data_manager import get_dog_description, UserPreferences, get_breed_recommendations, format_recommendation_html from history_manager import UserHistoryManager from search_history import create_history_tab from styles import get_css_styles from urllib.parse import quote from ultralytics import YOLO import asyncio import traceback model_yolo = YOLO('yolov8l.pt') history_manager = UserHistoryManager() dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", "Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", "Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", "Wire-Haired_Fox_Terrier"] class MultiHeadAttention(nn.Module): def __init__(self, in_dim, num_heads=8): super().__init__() self.num_heads = num_heads self.head_dim = max(1, in_dim // num_heads) self.scaled_dim = self.head_dim * num_heads self.fc_in = nn.Linear(in_dim, self.scaled_dim) self.query = nn.Linear(self.scaled_dim, self.scaled_dim) self.key = nn.Linear(self.scaled_dim, self.scaled_dim) self.value = nn.Linear(self.scaled_dim, self.scaled_dim) self.fc_out = nn.Linear(self.scaled_dim, in_dim) def forward(self, x): N = x.shape[0] x = self.fc_in(x) q = self.query(x).view(N, self.num_heads, self.head_dim) k = self.key(x).view(N, self.num_heads, self.head_dim) v = self.value(x).view(N, self.num_heads, self.head_dim) energy = torch.einsum("nqd,nkd->nqk", [q, k]) attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2) out = torch.einsum("nqk,nvd->nqd", [attention, v]) out = out.reshape(N, self.scaled_dim) out = self.fc_out(out) return out class BaseModel(nn.Module): def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'): super().__init__() self.device = device self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1) self.feature_dim = self.backbone.classifier[1].in_features self.backbone.classifier = nn.Identity() self.num_heads = max(1, min(8, self.feature_dim // 64)) self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads) self.classifier = nn.Sequential( nn.LayerNorm(self.feature_dim), nn.Dropout(0.3), nn.Linear(self.feature_dim, num_classes) ) self.to(device) def forward(self, x): x = x.to(self.device) features = self.backbone(x) attended_features = self.attention(features) logits = self.classifier(attended_features) return logits, attended_features num_classes = 120 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = BaseModel(num_classes=num_classes, device=device) checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu')) model.load_state_dict(checkpoint['model_state_dict']) # evaluation mode model.eval() # Image preprocessing function def preprocess_image(image): # If the image is numpy.ndarray turn into PIL.Image if isinstance(image, np.ndarray): image = Image.fromarray(image) # Use torchvision.transforms to process images transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) return transform(image).unsqueeze(0) def get_akc_breeds_link(breed): base_url = "https://www.akc.org/dog-breeds/" breed_url = breed.lower().replace('_', '-') return f"{base_url}{breed_url}/" async def predict_single_dog(image): image_tensor = preprocess_image(image) with torch.no_grad(): output = model(image_tensor) logits = output[0] if isinstance(output, tuple) else output probabilities = F.softmax(logits, dim=1) topk_probs, topk_indices = torch.topk(probabilities, k=3) top1_prob = topk_probs[0][0].item() topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]] # Calculate relative probabilities for display raw_probs = [prob.item() for prob in topk_probs[0]] sum_probs = sum(raw_probs) relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in raw_probs] return top1_prob, topk_breeds, relative_probs async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45): results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0] dogs = [] boxes = [] for box in results.boxes: if box.cls == 16: # COCO dataset class for dog is 16 xyxy = box.xyxy[0].tolist() confidence = box.conf.item() boxes.append((xyxy, confidence)) if not boxes: dogs.append((image, 1.0, [0, 0, image.width, image.height])) else: nms_boxes = non_max_suppression(boxes, iou_threshold) for box, confidence in nms_boxes: x1, y1, x2, y2 = box w, h = x2 - x1, y2 - y1 x1 = max(0, x1 - w * 0.05) y1 = max(0, y1 - h * 0.05) x2 = min(image.width, x2 + w * 0.05) y2 = min(image.height, y2 + h * 0.05) cropped_image = image.crop((x1, y1, x2, y2)) dogs.append((cropped_image, confidence, [x1, y1, x2, y2])) return dogs def non_max_suppression(boxes, iou_threshold): keep = [] boxes = sorted(boxes, key=lambda x: x[1], reverse=True) while boxes: current = boxes.pop(0) keep.append(current) boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold] return keep def calculate_iou(box1, box2): x1 = max(box1[0], box2[0]) y1 = max(box1[1], box2[1]) x2 = min(box1[2], box2[2]) y2 = min(box1[3], box2[3]) intersection = max(0, x2 - x1) * max(0, y2 - y1) area1 = (box1[2] - box1[0]) * (box1[3] - box1[1]) area2 = (box2[2] - box2[0]) * (box2[3] - box2[1]) iou = intersection / float(area1 + area2 - intersection) return iou async def process_single_dog(image): top1_prob, topk_breeds, relative_probs = await predict_single_dog(image) # Case 1: Low confidence - unclear image or breed not in dataset if top1_prob < 0.2: error_message = '''
{description.get('Description', '')}
{error_msg}
", gr.update(visible=True), initial_state def format_description_html(description, breed): html = "Powered by AI • Breed Recognition • Smart Matching • Companion Guide
Upload a picture of a dog, and the model will predict its breed and provide detailed information!
") gr.HTML("Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
") with gr.Row(): input_image = gr.Image(label="Upload a dog image", type="pil") output_image = gr.Image(label="Annotated Image") output = gr.HTML(label="Prediction Results") initial_state = gr.State() input_image.change( predict, inputs=input_image, outputs=[output, output_image, initial_state] ) gr.Examples( examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'Samoyed.jpg', 'French_Bulldog.jpeg'], inputs=input_image) # 第二個 Tab:品種比較功能 with gr.TabItem("Breed Comparison"): gr.HTML("Select two dog breeds to compare their characteristics and care requirements.
") with gr.Row(): breed1_dropdown = gr.Dropdown( choices=dog_breeds, label="Select First Breed", value="Golden_Retriever" ) breed2_dropdown = gr.Dropdown( choices=dog_breeds, label="Select Second Breed", value="Border_Collie" ) compare_btn = gr.Button("Compare Breeds") comparison_output = gr.HTML(label="Comparison Results") def show_comparison(breed1, breed2): if not breed1 or not breed2: return "Please select two breeds to compare" breed1_info = get_dog_description(breed1) breed2_info = get_dog_description(breed2) html_output = f"""Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
") with gr.Row(): with gr.Column(): living_space = gr.Radio( choices=["apartment", "house_small", "house_large"], label="What type of living space do you have?", info="Choose your current living situation", value="apartment" ) exercise_time = gr.Slider( minimum=0, maximum=180, value=60, label="Daily exercise time (minutes)", info="Consider walks, play time, and training" ) grooming_commitment = gr.Radio( choices=["low", "medium", "high"], label="Grooming commitment level", info="Low: monthly, Medium: weekly, High: daily", value="medium" ) with gr.Column(): experience_level = gr.Radio( choices=["beginner", "intermediate", "advanced"], label="Dog ownership experience", info="Be honest - this helps find the right match", value="beginner" ) has_children = gr.Checkbox( label="Have children at home", info="Helps recommend child-friendly breeds" ) noise_tolerance = gr.Radio( choices=["low", "medium", "high"], label="Noise tolerance level", info="Some breeds are more vocal than others", value="medium" ) # 設置按鈕的點擊事件 get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary") recommendation_output = gr.HTML(label="Breed Recommendations") def on_find_match_click(*args): try: user_prefs = UserPreferences( living_space=args[0], exercise_time=args[1], grooming_commitment=args[2], experience_level=args[3], has_children=args[4], noise_tolerance=args[5], space_for_play=True if args[0] != "apartment" else False, other_pets=False, climate="moderate" ) # 取得推薦結果 recommendations = get_breed_recommendations(user_prefs) print("Debug - Recommendations received:") for rec in recommendations: print(f"#{rec['rank']} {rec['breed']}: {rec['final_score']:.4f}") # 修改這裡:確保保存完整的推薦資訊 history_results = [{ 'breed': rec['breed'], 'rank': rec['rank'], 'overall_score': rec['final_score'], # 使用 final_score 'base_score': rec['base_score'], 'bonus_score': rec['bonus_score'], 'scores': rec['scores'] } for rec in recommendations] print("Debug - Preparing to save history:") for res in history_results: print(f"Saving #{res['rank']} {res['breed']}: {res['overall_score']:.4f}") history_component.save_search( user_preferences={ 'living_space': args[0], 'exercise_time': args[1], 'grooming_commitment': args[2], 'experience_level': args[3], 'has_children': args[4], 'noise_tolerance': args[5] }, results=history_results ) return format_recommendation_html(recommendations) except Exception as e: print(f"Error in find match: {str(e)}") import traceback print(traceback.format_exc()) return "Error getting recommendations" get_recommendations_btn.click( fn=on_find_match_click, inputs=[ living_space, exercise_time, grooming_commitment, experience_level, has_children, noise_tolerance ], outputs=recommendation_output ) history_component = create_history_tab() gr.HTML('For more details on this project and other work, feel free to visit my GitHub Dog Breed Classifier') if __name__ == "__main__": iface.launch(share=True)