import os import numpy as np import torch import torch.nn as nn import gradio as gr import time import spaces import timm from torchvision.ops import nms, box_iou import torch.nn.functional as F from torchvision import transforms from PIL import Image, ImageDraw, ImageFont, ImageFilter from breed_health_info import breed_health_info from breed_noise_info import breed_noise_info from dog_database import get_dog_description from scoring_calculation_system import UserPreferences from recommendation_html_format import format_recommendation_html, get_breed_recommendations from history_manager import UserHistoryManager from search_history import create_history_tab, create_history_component from styles import get_css_styles from breed_detection import create_detection_tab from breed_comparison import create_comparison_tab from breed_recommendation import create_recommendation_tab from html_templates import ( format_description_html, format_single_dog_result, format_multiple_breeds_result, format_unknown_breed_message, format_not_dog_message, format_hint_html, format_multi_dog_container, format_breed_details_html, get_color_scheme, get_akc_breeds_link ) from model_architecture import BaseModel, dog_breeds from urllib.parse import quote from ultralytics import YOLO import asyncio import traceback history_manager = UserHistoryManager() class ModelManager: """ Singleton class for managing model instances and device allocation specifically designed for Hugging Face Spaces deployment. """ _instance = None _initialized = False _yolo_model = None _breed_model = None _device = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) return cls._instance def __init__(self): if not ModelManager._initialized: self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ModelManager._initialized = True @property def device(self): if self._device is None: self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') return self._device @property def yolo_model(self): if self._yolo_model is None: self._yolo_model = YOLO('yolov8x.pt') return self._yolo_model @property def breed_model(self): if self._breed_model is None: self._breed_model = BaseModel( num_classes=len(dog_breeds), device=self.device ).to(self.device) checkpoint = torch.load( 'ConvNextV2Base_best_model.pth', map_location=self.device ) self._breed_model.load_state_dict(checkpoint['base_model'], strict=False) self._breed_model.eval() return self._breed_model # Initialize model manager model_manager = ModelManager() def preprocess_image(image): """Preprocesses images for model input""" if isinstance(image, np.ndarray): image = Image.fromarray(image) transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) return transform(image).unsqueeze(0) @spaces.GPU def predict_single_dog(image): """Predicts dog breed for a single image""" image_tensor = preprocess_image(image).to(model_manager.device) with torch.no_grad(): logits = model_manager.breed_model(image_tensor)[0] probs = F.softmax(logits, dim=1) top5_prob, top5_idx = torch.topk(probs, k=5) breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]] probabilities = [prob.item() for prob in top5_prob[0]] sum_probs = sum(probabilities[:3]) relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]] return probabilities[0], breeds[:3], relative_probs def enhanced_preprocess(image, is_standing=False, has_overlap=False): """ Enhanced image preprocessing function with special handling for different poses and overlapping cases. """ target_size = 224 w, h = image.size if is_standing: if h > w * 1.5: new_h = target_size new_w = min(target_size, int(w * (target_size / h))) new_w = max(new_w, int(target_size * 0.6)) elif has_overlap: scale = min(target_size/w, target_size/h) * 0.95 new_w = int(w * scale) new_h = int(h * scale) else: scale = min(target_size/w, target_size/h) new_w = int(w * scale) new_h = int(h * scale) resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS) final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240)) paste_x = (target_size - new_w) // 2 paste_y = (target_size - new_h) // 2 final_image.paste(resized, (paste_x, paste_y)) return final_image @spaces.GPU def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3): """ Enhanced multiple dog detection with improved bounding box handling and intelligent boundary adjustments. """ results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0] img_width, img_height = image.size detected_boxes = [] # Phase 1: Initial detection and processing for box in results.boxes: if box.cls.item() == 16: # Dog class xyxy = box.xyxy[0].tolist() confidence = box.conf.item() x1, y1, x2, y2 = map(int, xyxy) w = x2 - x1 h = y2 - y1 detected_boxes.append({ 'coords': [x1, y1, x2, y2], 'width': w, 'height': h, 'center_x': (x1 + x2) / 2, 'center_y': (y1 + y2) / 2, 'area': w * h, 'confidence': confidence, 'aspect_ratio': w / h if h != 0 else 1 }) if not detected_boxes: return [(image, 1.0, [0, 0, img_width, img_height], False)] # Phase 2: Analysis of detection relationships avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes) avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes) avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes) def calculate_iou(box1, box2): x1 = max(box1['coords'][0], box2['coords'][0]) y1 = max(box1['coords'][1], box2['coords'][1]) x2 = min(box1['coords'][2], box2['coords'][2]) y2 = min(box1['coords'][3], box2['coords'][3]) if x2 <= x1 or y2 <= y1: return 0.0 intersection = (x2 - x1) * (y2 - y1) area1 = box1['area'] area2 = box2['area'] return intersection / (area1 + area2 - intersection) # Phase 3: Processing each detection processed_boxes = [] overlap_threshold = 0.2 for i, box_info in enumerate(detected_boxes): x1, y1, x2, y2 = box_info['coords'] w = box_info['width'] h = box_info['height'] center_x = box_info['center_x'] center_y = box_info['center_y'] # Check for overlaps has_overlap = False for j, other_box in enumerate(detected_boxes): if i != j and calculate_iou(box_info, other_box) > overlap_threshold: has_overlap = True break # Adjust expansion strategy base_expansion = 0.03 max_expansion = 0.05 is_standing = h > 1.5 * w is_sitting = 0.8 <= h/w <= 1.2 is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5) if has_overlap: h_expansion = w_expansion = base_expansion * 0.8 else: if is_standing: h_expansion = min(base_expansion * 1.2, max_expansion) w_expansion = base_expansion elif is_sitting: h_expansion = w_expansion = base_expansion else: h_expansion = w_expansion = base_expansion * 0.9 # Position compensation if center_x < img_width * 0.2 or center_x > img_width * 0.8: w_expansion *= 0.9 if is_abnormal_size: h_expansion *= 0.8 w_expansion *= 0.8 # Calculate final bounding box expansion_w = w * w_expansion expansion_h = h * h_expansion new_x1 = max(0, center_x - (w + expansion_w)/2) new_y1 = max(0, center_y - (h + expansion_h)/2) new_x2 = min(img_width, center_x + (w + expansion_w)/2) new_y2 = min(img_height, center_y + (h + expansion_h)/2) # Crop and process image cropped_image = image.crop((int(new_x1), int(new_y1), int(new_x2), int(new_y2))) processed_image = enhanced_preprocess( cropped_image, is_standing=is_standing, has_overlap=has_overlap ) processed_boxes.append(( processed_image, box_info['confidence'], [new_x1, new_y1, new_x2, new_y2], True )) return processed_boxes @spaces.GPU def predict(image): """ Main prediction function that handles both single and multiple dog detection. Args: image: PIL Image or numpy array Returns: tuple: (html_output, annotated_image, initial_state) """ if image is None: return format_hint_html("Please upload an image to start."), None, None try: if isinstance(image, np.ndarray): image = Image.fromarray(image) # 檢測圖片中的物體 dogs = detect_multiple_dogs(image) color_scheme = get_color_scheme(len(dogs) == 1) # 準備標註 annotated_image = image.copy() draw = ImageDraw.Draw(annotated_image) try: font = ImageFont.truetype("arial.ttf", 24) except: font = ImageFont.load_default() dogs_info = "" # 處理每個檢測到的物體 for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs): print(f"Predict processing - Object {i+1}:") print(f" Is dog: {is_dog}") print(f" Detection confidence: {detection_confidence:.4f}") # 如果是狗且進行品種預測,在這裡也加入打印語句 if is_dog: top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image) print(f" Breed prediction - Top probability: {top1_prob:.4f}") print(f" Top breeds: {topk_breeds[:3]}") color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)] # 繪製框和標籤 draw.rectangle(box, outline=color, width=4) label = f"Dog {i+1}" if is_dog else f"Object {i+1}" label_bbox = draw.textbbox((0, 0), label, font=font) label_width = label_bbox[2] - label_bbox[0] label_height = label_bbox[3] - label_bbox[1] # 繪製標籤背景和文字 label_x = box[0] + 5 label_y = box[1] + 5 draw.rectangle( [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4], fill='white', outline=color, width=2 ) draw.text((label_x, label_y), label, fill=color, font=font) try: # 首先檢查是否為狗 if not is_dog: dogs_info += format_not_dog_message(color, i+1) continue # 如果是狗,進行品種預測 top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image) combined_confidence = detection_confidence * top1_prob # 根據信心度決定輸出格式 if combined_confidence < 0.15: dogs_info += format_unknown_breed_message(color, i+1) elif top1_prob >= 0.4: breed = topk_breeds[0] description = get_dog_description(breed) if description is None: description = { "Name": breed, "Size": "Unknown", "Exercise Needs": "Unknown", "Grooming Needs": "Unknown", "Care Level": "Unknown", "Good with Children": "Unknown", "Description": f"Identified as {breed.replace('_', ' ')}" } dogs_info += format_single_dog_result(breed, description, color) else: dogs_info += format_multiple_breeds_result( topk_breeds, relative_probs, color, i+1, lambda breed: get_dog_description(breed) or { "Name": breed, "Size": "Unknown", "Exercise Needs": "Unknown", "Grooming Needs": "Unknown", "Care Level": "Unknown", "Good with Children": "Unknown", "Description": f"Identified as {breed.replace('_', ' ')}" } ) except Exception as e: print(f"Error formatting results for dog {i+1}: {str(e)}") dogs_info += format_unknown_breed_message(color, i+1) # 包裝最終的HTML輸出 html_output = format_multi_dog_container(dogs_info) # 準備初始狀態 initial_state = { "dogs_info": dogs_info, "image": annotated_image, "is_multi_dog": len(dogs) > 1, "html_output": html_output } return html_output, annotated_image, initial_state except Exception as e: error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" print(error_msg) return format_hint_html(error_msg), None, None def show_details_html(choice, previous_output, initial_state): """ Generate detailed HTML view for a selected breed. Args: choice: str, Selected breed option previous_output: str, Previous HTML output initial_state: dict, Current state information Returns: tuple: (html_output, gradio_update, updated_state) """ if not choice: return previous_output, gr.update(visible=True), initial_state try: breed = choice.split("More about ")[-1] description = get_dog_description(breed) html_output = format_breed_details_html(description, breed) # Update state initial_state["current_description"] = html_output initial_state["original_buttons"] = initial_state.get("buttons", []) return html_output, gr.update(visible=True), initial_state except Exception as e: error_msg = f"An error occurred while showing details: {e}" print(error_msg) return format_hint_html(error_msg), gr.update(visible=True), initial_state def main(): with gr.Blocks(css=get_css_styles()) as iface: # Header HTML gr.HTML("""
Powered by AI • Breed Recognition • Smart Matching • Companion Guide