Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
import requests | |
import spaces | |
from diffusers.utils import load_image | |
from diffusers import FluxControlNetPipeline, FluxControlNetModel | |
from gradio_imageslider import ImageSlider | |
# Pretrained model paths | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union' | |
# Load the ControlNet and pipeline models | |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
pipe.to("cuda") | |
# Define control modes | |
CONTROL_MODES = { | |
0: "Canny", | |
1: "Tile", | |
2: "Depth", | |
3: "Blur", | |
4: "Pose", | |
5: "Gray (Low)", | |
6: "LQ" | |
} | |
def preprocess_image(image, target_width, target_height): | |
image = image.resize((target_width, target_height), Image.LANCZOS) | |
return image | |
def generate_image(prompt, control_image, control_mode, controlnet_conditioning_scale, num_steps, guidance, width, height, seed, random_seed): | |
if random_seed: | |
seed = np.random.randint(0, 10000) | |
# Ensure width and height are multiples of 16 | |
width = 16 * (width // 16) | |
height = 16 * (height // 16) | |
# Set the seed for reproducibility | |
torch.manual_seed(seed) | |
# Preprocess control image | |
control_image = preprocess_image(control_image, width, height) | |
# Ensure control_mode is an integer | |
control_mode_index = int(control_mode) | |
# Generate the image with the selected control mode and other parameters | |
with torch.no_grad(): | |
image = pipe( | |
prompt, | |
control_image=control_image, | |
control_mode=control_mode_index, # Pass control mode as an integer | |
width=width, | |
height=height, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_inference_steps=num_steps, | |
guidance_scale=guidance | |
).images[0] | |
return image | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Image(type="pil", label="Control Image"), | |
gr.Dropdown(choices=[(i, name) for i, name in CONTROL_MODES.items()], label="Control Mode", value=0), # Correct value and format for dropdown | |
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="ControlNet Conditioning Scale"), | |
gr.Slider(step=1, minimum=1, maximum=64, value=24, label="Num Steps"), | |
gr.Slider(minimum=0.1, maximum=10, value=3.5, label="Guidance"), | |
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"), | |
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"), | |
gr.Number(value=42, label="Seed"), | |
gr.Checkbox(label="Random Seed") | |
], | |
outputs=ImageSlider(label="Generated Image"), | |
title="FLUX.1 Controlnet with Multiple Modes", | |
description="Generate images using ControlNet and a text prompt with adjustable control modes." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |