Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from einops import rearrange
|
7 |
+
import requests
|
8 |
+
from diffusers.utils import load_image
|
9 |
+
from diffusers import FluxControlNetPipeline, FluxControlNetModel
|
10 |
+
from gradio_imageslider import ImageSlider
|
11 |
+
|
12 |
+
# Pretrained model paths
|
13 |
+
base_model = 'black-forest-labs/FLUX.1-dev'
|
14 |
+
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
15 |
+
|
16 |
+
# Load the ControlNet and pipeline models
|
17 |
+
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
18 |
+
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
19 |
+
pipe.to("cuda")
|
20 |
+
|
21 |
+
# Define control modes
|
22 |
+
CONTROL_MODES = {
|
23 |
+
0: "Canny",
|
24 |
+
1: "Tile",
|
25 |
+
2: "Depth",
|
26 |
+
3: "Blur",
|
27 |
+
4: "Pose",
|
28 |
+
5: "Gray (Low)",
|
29 |
+
6: "LQ"
|
30 |
+
}
|
31 |
+
|
32 |
+
def preprocess_image(image, target_width, target_height):
|
33 |
+
image = image.resize((target_width, target_height), Image.LANCZOS)
|
34 |
+
return image
|
35 |
+
|
36 |
+
def generate_image(prompt, control_image, control_mode, controlnet_conditioning_scale, num_steps, guidance, width, height, seed, random_seed):
|
37 |
+
if random_seed:
|
38 |
+
seed = np.random.randint(0, 10000)
|
39 |
+
|
40 |
+
# Ensure width and height are multiples of 16
|
41 |
+
width = 16 * (width // 16)
|
42 |
+
height = 16 * (height // 16)
|
43 |
+
|
44 |
+
# Set the seed for reproducibility
|
45 |
+
torch.manual_seed(seed)
|
46 |
+
|
47 |
+
# Preprocess control image
|
48 |
+
control_image = preprocess_image(control_image, width, height)
|
49 |
+
|
50 |
+
# Generate the image with the selected control mode and other parameters
|
51 |
+
with torch.no_grad():
|
52 |
+
image = pipe(
|
53 |
+
prompt,
|
54 |
+
control_image=control_image,
|
55 |
+
control_mode=control_mode,
|
56 |
+
width=width,
|
57 |
+
height=height,
|
58 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
59 |
+
num_inference_steps=num_steps,
|
60 |
+
guidance_scale=guidance
|
61 |
+
).images[0]
|
62 |
+
|
63 |
+
return image
|
64 |
+
|
65 |
+
# Define the Gradio interface
|
66 |
+
interface = gr.Interface(
|
67 |
+
fn=generate_image,
|
68 |
+
inputs=[
|
69 |
+
gr.Textbox(label="Prompt"),
|
70 |
+
gr.Image(type="pil", label="Control Image"),
|
71 |
+
gr.Dropdown(choices=[f"{i}: {name}" for i, name in CONTROL_MODES.items()], type="index", label="Control Mode", default=0),
|
72 |
+
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="ControlNet Conditioning Scale"),
|
73 |
+
gr.Slider(step=1, minimum=1, maximum=64, value=24, label="Num Steps"),
|
74 |
+
gr.Slider(minimum=0.1, maximum=10, value=3.5, label="Guidance"),
|
75 |
+
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"),
|
76 |
+
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"),
|
77 |
+
gr.Number(value=42, label="Seed"),
|
78 |
+
gr.Checkbox(label="Random Seed")
|
79 |
+
],
|
80 |
+
outputs=ImageSlider(label="Generated Image"),
|
81 |
+
title="FLUX.1 Controlnet with Multiple Modes",
|
82 |
+
description="Generate images using ControlNet and a text prompt with adjustable control modes."
|
83 |
+
)
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
interface.launch()
|