Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,33 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
load_models()
|
36 |
-
|
37 |
-
def preprocess_image(image, target_width, target_height, crop=True):
|
38 |
-
if crop:
|
39 |
-
image = c_crop(image) # Crop the image to square
|
40 |
-
original_width, original_height = image.size
|
41 |
-
|
42 |
-
# Resize to match the target size without stretching
|
43 |
-
scale = max(target_width / original_width, target_height / original_height)
|
44 |
-
resized_width = int(scale * original_width)
|
45 |
-
resized_height = int(scale * original_height)
|
46 |
-
|
47 |
-
image = image.resize((resized_width, resized_height), Image.LANCZOS)
|
48 |
-
|
49 |
-
# Center crop to match the target dimensions
|
50 |
-
left = (resized_width - target_width) // 2
|
51 |
-
top = (resized_height - target_height) // 2
|
52 |
-
image = image.crop((left, top, left + target_width, top + target_height))
|
53 |
-
else:
|
54 |
-
image = image.resize((target_width, target_height), Image.LANCZOS)
|
55 |
-
|
56 |
-
return image
|
57 |
-
|
58 |
-
def preprocess_canny_image(image, target_width, target_height, crop=True):
|
59 |
-
image = preprocess_image(image, target_width, target_height, crop=crop)
|
60 |
-
image = canny_processor(image)
|
61 |
-
return image
|
62 |
-
|
63 |
-
@spaces.GPU(duration=120)
|
64 |
-
def generate_image(prompt, control_image, control_mode, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
|
65 |
-
if random_seed:
|
66 |
-
seed = np.random.randint(0, 10000)
|
67 |
-
|
68 |
-
if not os.path.isdir("./controlnet_results/"):
|
69 |
-
os.makedirs("./controlnet_results/")
|
70 |
-
|
71 |
-
torch_device = torch.device("cuda")
|
72 |
-
|
73 |
-
model.to(torch_device)
|
74 |
-
t5.to(torch_device)
|
75 |
-
clip.to(torch_device)
|
76 |
-
ae.to(torch_device)
|
77 |
-
controlnet.to(torch_device)
|
78 |
-
|
79 |
-
width = 16 * width // 16
|
80 |
-
height = 16 * height // 16
|
81 |
-
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell))
|
82 |
-
|
83 |
-
processed_input = preprocess_image(control_image, width, height)
|
84 |
-
canny_processed = preprocess_canny_image(control_image, width, height)
|
85 |
-
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
|
86 |
-
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
|
87 |
-
|
88 |
-
torch.manual_seed(seed)
|
89 |
-
with torch.no_grad():
|
90 |
-
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
|
91 |
-
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
92 |
-
|
93 |
-
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond, control_mode=control_modes.index(control_mode))
|
94 |
-
|
95 |
-
x = unpack(x.float(), height, width)
|
96 |
-
x = ae.decode(x)
|
97 |
-
|
98 |
-
x1 = x.clamp(-1, 1)
|
99 |
-
x1 = rearrange(x1[-1], "c h w -> h w c")
|
100 |
-
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
|
101 |
-
|
102 |
-
return [processed_input, output_img] # Return both images for slider
|
103 |
-
|
104 |
-
control_modes = [
|
105 |
-
"canny",
|
106 |
-
"tile",
|
107 |
-
"depth",
|
108 |
-
"blur",
|
109 |
-
"pose",
|
110 |
-
"gray",
|
111 |
-
"lq"
|
112 |
-
]
|
113 |
-
|
114 |
-
interface = gr.Interface(
|
115 |
-
fn=generate_image,
|
116 |
-
inputs=[
|
117 |
-
gr.Textbox(label="Prompt"),
|
118 |
-
gr.Image(type="pil", label="Control Image"),
|
119 |
-
gr.Dropdown(choices=control_modes, value="canny", label="Control Mode"),
|
120 |
-
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
|
121 |
-
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
|
122 |
-
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
|
123 |
-
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
|
124 |
-
gr.Number(value=42, label="Seed"),
|
125 |
-
gr.Checkbox(label="Random Seed")
|
126 |
-
],
|
127 |
-
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
128 |
-
title="FLUX.1 Controlnet Canny",
|
129 |
-
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
|
130 |
-
)
|
131 |
-
|
132 |
-
if __name__ == "__main__":
|
133 |
-
interface.launch(share=True)
|
|
|
|
|
1 |
import torch
|
2 |
+
from diffusers.utils import load_image
|
3 |
+
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
4 |
+
|
5 |
+
base_model = 'black-forest-labs/FLUX.1-dev'
|
6 |
+
controlnet_model_union = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
7 |
+
|
8 |
+
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union, torch_dtype=torch.bfloat16)
|
9 |
+
controlnet = FluxMultiControlNetModel([controlnet_union]) # we always recommend loading via FluxMultiControlNetModel
|
10 |
+
|
11 |
+
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
12 |
+
pipe.to("cuda")
|
13 |
+
|
14 |
+
prompt = 'A bohemian-style female travel blogger with sun-kissed skin and messy beach waves.'
|
15 |
+
control_image_depth = load_image("https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union/resolve/main/images/depth.jpg")
|
16 |
+
control_mode_depth = 2
|
17 |
+
|
18 |
+
control_image_canny = load_image("https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union/resolve/main/images/canny.jpg")
|
19 |
+
control_mode_canny = 0
|
20 |
+
|
21 |
+
width, height = control_image.size
|
22 |
+
|
23 |
+
image = pipe(
|
24 |
+
prompt,
|
25 |
+
control_image=[control_image_depth, control_image_canny],
|
26 |
+
control_mode=[control_mode_depth, control_mode_canny],
|
27 |
+
width=width,
|
28 |
+
height=height,
|
29 |
+
controlnet_conditioning_scale=[0.2, 0.4],
|
30 |
+
num_inference_steps=24,
|
31 |
+
guidance_scale=3.5,
|
32 |
+
generator=torch.manual_seed(42),
|
33 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|