Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,19 @@ from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiCont
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
|
|
|
|
|
|
7 |
base_model = 'black-forest-labs/FLUX.1-dev'
|
8 |
controlnet_model_union = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
9 |
|
10 |
-
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union, torch_dtype=
|
11 |
-
controlnet = FluxMultiControlNetModel([controlnet_union])
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
pipe.to("cuda")
|
15 |
|
16 |
control_modes = [
|
17 |
"canny",
|
@@ -46,17 +51,21 @@ def generate_image(prompt, control_image_depth, control_mode_depth_index, use_de
|
|
46 |
width, height = control_image_canny.shape[:2]
|
47 |
adjusted_width, adjusted_height = adjust_dimensions(width, height)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
|
61 |
return image
|
62 |
|
@@ -75,4 +84,4 @@ iface = gr.Interface(
|
|
75 |
description="Generate an image using FluxControlNet with depth and canny control images.",
|
76 |
)
|
77 |
|
78 |
-
iface.launch(share=True)
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
+
# Ensure that you're using the appropriate data type for your GPU
|
8 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
9 |
+
|
10 |
base_model = 'black-forest-labs/FLUX.1-dev'
|
11 |
controlnet_model_union = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
12 |
|
13 |
+
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union, torch_dtype=torch_dtype)
|
14 |
+
controlnet = FluxMultiControlNetModel([controlnet_union])
|
15 |
+
|
16 |
+
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch_dtype)
|
17 |
|
18 |
+
# If you encounter issues with CUDA, you can run this on the CPU for debugging
|
19 |
+
pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
control_modes = [
|
22 |
"canny",
|
|
|
51 |
width, height = control_image_canny.shape[:2]
|
52 |
adjusted_width, adjusted_height = adjust_dimensions(width, height)
|
53 |
|
54 |
+
try:
|
55 |
+
image = pipe(
|
56 |
+
prompt,
|
57 |
+
control_image=control_images,
|
58 |
+
control_mode=control_modes,
|
59 |
+
width=adjusted_width,
|
60 |
+
height=adjusted_height,
|
61 |
+
controlnet_conditioning_scale=conditioning_scales,
|
62 |
+
num_inference_steps=24,
|
63 |
+
guidance_scale=3.5,
|
64 |
+
generator=torch.manual_seed(42),
|
65 |
+
).images[0]
|
66 |
+
except RuntimeError as e:
|
67 |
+
torch.cuda.empty_cache()
|
68 |
+
raise e
|
69 |
|
70 |
return image
|
71 |
|
|
|
84 |
description="Generate an image using FluxControlNet with depth and canny control images.",
|
85 |
)
|
86 |
|
87 |
+
iface.launch(share=True)
|