Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,36 @@
|
|
1 |
-
|
2 |
import spaces
|
3 |
-
from diffusers import DDIMScheduler,
|
4 |
-
import
|
|
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from insightface.app import FaceAnalysis
|
|
|
7 |
import gradio as gr
|
8 |
import cv2
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
"
|
13 |
-
"
|
14 |
-
"
|
|
|
|
|
15 |
}
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"name": "3D Model",
|
31 |
-
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
32 |
-
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"name": "Anime",
|
36 |
-
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
37 |
-
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"name": "Digital Art",
|
41 |
-
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
42 |
-
"negative_prompt": "photo, photorealistic, realism, ugly",
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"name": "Photographic",
|
46 |
-
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
47 |
-
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"name": "Pixel art",
|
51 |
-
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
52 |
-
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"name": "Fantasy art",
|
56 |
-
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
57 |
-
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
58 |
-
},
|
59 |
-
{
|
60 |
-
"name": "Neonpunk",
|
61 |
-
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
|
62 |
-
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"name": "Manga",
|
66 |
-
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
|
67 |
-
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
|
68 |
-
},
|
69 |
-
]
|
70 |
-
|
71 |
-
# Styles dictionary to map style names to prompts and negative prompts
|
72 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
73 |
-
STYLE_NAMES = list(styles.keys())
|
74 |
-
DEFAULT_STYLE_NAME = "(No style)"
|
75 |
-
|
76 |
-
# Function to apply the selected style
|
77 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
78 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
79 |
-
return p.replace("{prompt}", positive), n + negative
|
80 |
-
|
81 |
-
# Download the necessary model component
|
82 |
-
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
|
83 |
device = "cuda"
|
84 |
|
85 |
-
# Configure the noise scheduler
|
86 |
noise_scheduler = DDIMScheduler(
|
87 |
num_train_timesteps=1000,
|
88 |
beta_start=0.00085,
|
@@ -92,55 +40,71 @@ noise_scheduler = DDIMScheduler(
|
|
92 |
set_alpha_to_one=False,
|
93 |
steps_offset=1,
|
94 |
)
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
model_path,
|
100 |
torch_dtype=torch.float16,
|
101 |
scheduler=noise_scheduler,
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
pipe = get_pipeline(current_model)
|
108 |
-
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
global current_model, pipe, ip_model
|
113 |
|
114 |
-
|
115 |
-
if model_options[model_choice] != current_model:
|
116 |
-
current_model = model_options[model_choice]
|
117 |
-
pipe = get_pipeline(current_model)
|
118 |
-
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
faceid_all_embeds = []
|
|
|
126 |
for image in images:
|
127 |
face = cv2.imread(image)
|
128 |
faces = app.get(face)
|
129 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
130 |
faceid_all_embeds.append(faceid_embed)
|
131 |
-
|
|
|
|
|
|
|
132 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
133 |
|
134 |
-
|
135 |
-
styled_prompt, styled_negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
return image
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def swap_to_gallery(images):
|
145 |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
146 |
|
@@ -149,34 +113,48 @@ def remove_back_to_files():
|
|
149 |
|
150 |
css = '''
|
151 |
h1{margin-bottom: 0 !important}
|
|
|
152 |
'''
|
153 |
|
154 |
with gr.Blocks(css=css) as demo:
|
155 |
-
gr.Markdown("
|
156 |
-
gr.Markdown("
|
157 |
with gr.Row():
|
158 |
with gr.Column():
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
163 |
with gr.Column(visible=False) as clear_button:
|
164 |
-
remove_and_reupload = gr.ClearButton(value="Remove
|
165 |
-
prompt = gr.Textbox(label="Prompt",
|
|
|
|
|
166 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100)
|
171 |
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20)
|
172 |
width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024)
|
173 |
height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024)
|
174 |
-
submit = gr.Button("Submit", variant="primary")
|
175 |
with gr.Column():
|
176 |
gallery = gr.Gallery(label="Generated Images")
|
177 |
-
|
|
|
|
|
178 |
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
|
179 |
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
|
180 |
-
submit.click(fn=generate_image,
|
181 |
-
|
|
|
|
|
|
|
|
|
182 |
demo.launch()
|
|
|
1 |
+
rt torch
|
2 |
import spaces
|
3 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
4 |
+
from transformers import AutoFeatureExtractor
|
5 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
6 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from insightface.app import FaceAnalysis
|
9 |
+
from insightface.utils import face_align
|
10 |
import gradio as gr
|
11 |
import cv2
|
12 |
|
13 |
+
base_model_paths = {
|
14 |
+
"RealisticVisionV4": "SG161222/Realistic_Vision_V4.0_noVAE",
|
15 |
+
"RealisticVisionV6": "SG161222/Realistic_Vision_V6.0_B1_noVAE",
|
16 |
+
"Deliberate": "Yntec/Deliberate",
|
17 |
+
"DeliberateV2": "Yntec/Deliberate2",
|
18 |
+
"Dreamshaper8": "Lykon/dreamshaper-8",
|
19 |
+
"EpicRealism": "emilianJR/epiCRealism"
|
20 |
}
|
21 |
|
22 |
+
|
23 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
24 |
+
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
25 |
+
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
|
26 |
+
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
|
27 |
+
|
28 |
+
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
29 |
+
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
30 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
|
31 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
device = "cuda"
|
33 |
|
|
|
34 |
noise_scheduler = DDIMScheduler(
|
35 |
num_train_timesteps=1000,
|
36 |
beta_start=0.00085,
|
|
|
40 |
set_alpha_to_one=False,
|
41 |
steps_offset=1,
|
42 |
)
|
43 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
44 |
|
45 |
+
def load_model(base_model_path):
|
46 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
47 |
+
base_model_path,
|
|
|
48 |
torch_dtype=torch.float16,
|
49 |
scheduler=noise_scheduler,
|
50 |
+
vae=vae,
|
51 |
+
feature_extractor=safety_feature_extractor,
|
52 |
+
safety_checker=None # <--- Disable safety checker
|
53 |
+
).to(device)
|
54 |
+
return pipe
|
55 |
|
56 |
+
ip_model = None
|
57 |
+
ip_model_plus = None
|
|
|
|
|
58 |
|
59 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
|
60 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
|
|
61 |
|
62 |
+
cv2.setNumThreads(1)
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
@spaces.GPU(enable_queue=True)
|
65 |
+
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, base_model, num_inference_steps, guidance_scale, width, height, progress=gr.Progress(track_tqdm=True)):
|
66 |
+
global ip_model, ip_model_plus
|
67 |
+
base_model_path = base_model_paths[base_model]
|
68 |
+
pipe = load_model(base_model_path)
|
69 |
+
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
70 |
+
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)
|
71 |
|
72 |
faceid_all_embeds = []
|
73 |
+
first_iteration = True
|
74 |
for image in images:
|
75 |
face = cv2.imread(image)
|
76 |
faces = app.get(face)
|
77 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
78 |
faceid_all_embeds.append(faceid_embed)
|
79 |
+
if(first_iteration and preserve_face_structure):
|
80 |
+
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
81 |
+
first_iteration = False
|
82 |
+
|
83 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
84 |
|
85 |
+
total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}"
|
|
|
86 |
|
87 |
+
if(not preserve_face_structure):
|
88 |
+
print("Generating normal")
|
89 |
+
image = ip_model.generate(
|
90 |
+
prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
|
91 |
+
scale=likeness_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
print("Generating plus")
|
95 |
+
image = ip_model_plus.generate(
|
96 |
+
prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
|
97 |
+
scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
98 |
+
)
|
99 |
+
print(image)
|
100 |
return image
|
101 |
|
102 |
+
def change_style(style):
|
103 |
+
if style == "Photorealistic":
|
104 |
+
return(gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0))
|
105 |
+
else:
|
106 |
+
return(gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8))
|
107 |
+
|
108 |
def swap_to_gallery(images):
|
109 |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
110 |
|
|
|
113 |
|
114 |
css = '''
|
115 |
h1{margin-bottom: 0 !important}
|
116 |
+
footer{display:none !important}
|
117 |
'''
|
118 |
|
119 |
with gr.Blocks(css=css) as demo:
|
120 |
+
gr.Markdown("")
|
121 |
+
gr.Markdown("")
|
122 |
with gr.Row():
|
123 |
with gr.Column():
|
124 |
+
files = gr.Files(
|
125 |
+
label="Drag 1 or more photos of your face",
|
126 |
+
file_types=["image"]
|
127 |
+
)
|
128 |
+
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
|
129 |
with gr.Column(visible=False) as clear_button:
|
130 |
+
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
131 |
+
prompt = gr.Textbox(label="Prompt",
|
132 |
+
info="Try something like 'a photo of a man/woman/person'",
|
133 |
+
placeholder="A photo of a [man/woman/person]...")
|
134 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
|
135 |
+
style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic")
|
136 |
+
base_model = gr.Dropdown(label="Base Model", choices=list(base_model_paths.keys()), value="Realistic_Vision_V4.0_noVAE")
|
137 |
+
submit = gr.Button("Submit")
|
138 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
139 |
+
preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True)
|
140 |
+
face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=3)
|
141 |
+
likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
|
142 |
+
nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through")
|
143 |
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100)
|
144 |
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20)
|
145 |
width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024)
|
146 |
height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024)
|
|
|
147 |
with gr.Column():
|
148 |
gallery = gr.Gallery(label="Generated Images")
|
149 |
+
style.change(fn=change_style,
|
150 |
+
inputs=style,
|
151 |
+
outputs=[preserve, face_strength, likeness_strength])
|
152 |
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
|
153 |
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
|
154 |
+
submit.click(fn=generate_image,
|
155 |
+
inputs=[files,prompt,negative_prompt,preserve, face_strength, likeness_strength, nfaa_negative_prompts, base_model, num_inference_steps, guidance_scale, width, height],
|
156 |
+
outputs=gallery)
|
157 |
+
|
158 |
+
gr.Markdown("")
|
159 |
+
|
160 |
demo.launch()
|