Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import spaces
|
3 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
4 |
+
from transformers import AutoFeatureExtractor
|
5 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
6 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
|
7 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
8 |
+
from insightface.app import FaceAnalysis
|
9 |
+
from insightface.utils import face_align
|
10 |
+
import gradio as gr
|
11 |
+
import cv2
|
12 |
+
import os
|
13 |
+
|
14 |
+
# Model paths
|
15 |
+
model_paths = {
|
16 |
+
"Realistic Vision V4.0": "SG161222/Realistic_Vision_V4.0_noVAE",
|
17 |
+
"Pony Realism v21": snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl"),
|
18 |
+
"Cyber Realistic Pony v61": snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl"),
|
19 |
+
"Stallion Dreams Pony Realistic v1": snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl")
|
20 |
+
}
|
21 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
22 |
+
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
23 |
+
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
|
24 |
+
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
|
25 |
+
|
26 |
+
# Safety Checker Setup
|
27 |
+
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
28 |
+
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
29 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
|
30 |
+
|
31 |
+
device = "cuda"
|
32 |
+
|
33 |
+
# Define the scheduler
|
34 |
+
noise_scheduler = DDIMScheduler(
|
35 |
+
num_train_timesteps=1000,
|
36 |
+
beta_start=0.00085,
|
37 |
+
beta_end=0.012,
|
38 |
+
beta_schedule="scaled_linear",
|
39 |
+
clip_sample=False,
|
40 |
+
set_alpha_to_one=False,
|
41 |
+
steps_offset=1,
|
42 |
+
)
|
43 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
44 |
+
|
45 |
+
# Face analysis setup
|
46 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
|
47 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
48 |
+
|
49 |
+
cv2.setNumThreads(1)
|
50 |
+
|
51 |
+
# Function to load the appropriate pipeline based on user selection
|
52 |
+
def load_model(model_choice):
|
53 |
+
model_path = model_paths[model_choice]
|
54 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
55 |
+
model_path,
|
56 |
+
torch_dtype=torch.float16,
|
57 |
+
scheduler=noise_scheduler,
|
58 |
+
vae=vae,
|
59 |
+
feature_extractor=safety_feature_extractor,
|
60 |
+
safety_checker=None
|
61 |
+
).to(device)
|
62 |
+
|
63 |
+
# Load the IP Adapter models
|
64 |
+
ip_model = IPAdapterFaceID(pipeline, ip_ckpt, device)
|
65 |
+
ip_model_plus = IPAdapterFaceIDPlus(pipeline, image_encoder_path, ip_plus_ckpt, device)
|
66 |
+
|
67 |
+
return pipeline, ip_model, ip_model_plus
|
68 |
+
|
69 |
+
# Gradio function to generate images
|
70 |
+
@spaces.GPU(enable_queue=True)
|
71 |
+
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, model_choice, progress=gr.Progress(track_tqdm=True)):
|
72 |
+
pipeline, ip_model, ip_model_plus = load_model(model_choice)
|
73 |
+
faceid_all_embeds = []
|
74 |
+
first_iteration = True
|
75 |
+
for image in images:
|
76 |
+
face = cv2.imread(image)
|
77 |
+
faces = app.get(face)
|
78 |
+
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
79 |
+
faceid_all_embeds.append(faceid_embed)
|
80 |
+
if first_iteration and preserve_face_structure:
|
81 |
+
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224)
|
82 |
+
first_iteration = False
|
83 |
+
|
84 |
+
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
85 |
+
total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}"
|
86 |
+
|
87 |
+
if not preserve_face_structure:
|
88 |
+
image = ip_model.generate(
|
89 |
+
prompt=prompt,
|
90 |
+
negative_prompt=total_negative_prompt,
|
91 |
+
faceid_embeds=average_embedding,
|
92 |
+
scale=likeness_strength,
|
93 |
+
width=512,
|
94 |
+
height=512,
|
95 |
+
num_inference_steps=30
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
image = ip_model_plus.generate(
|
99 |
+
prompt=prompt,
|
100 |
+
negative_prompt=total_negative_prompt,
|
101 |
+
faceid_embeds=average_embedding,
|
102 |
+
scale=likeness_strength,
|
103 |
+
face_image=face_image,
|
104 |
+
shortcut=True,
|
105 |
+
s_scale=face_strength,
|
106 |
+
width=512,
|
107 |
+
height=512,
|
108 |
+
num_inference_steps=30
|
109 |
+
)
|
110 |
+
return image
|
111 |
+
|
112 |
+
def change_style(style):
|
113 |
+
if style == "Photorealistic":
|
114 |
+
return gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)
|
115 |
+
else:
|
116 |
+
return gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)
|
117 |
+
|
118 |
+
def swap_to_gallery(images):
|
119 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
120 |
+
|
121 |
+
def remove_back_to_files():
|
122 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
123 |
+
|
124 |
+
css = '''
|
125 |
+
h1{margin-bottom: 0 !important}
|
126 |
+
footer{display:none !important}
|
127 |
+
'''
|
128 |
+
|
129 |
+
with gr.Blocks(css=css) as demo:
|
130 |
+
gr.Markdown("")
|
131 |
+
gr.Markdown("")
|
132 |
+
with gr.Row():
|
133 |
+
with gr.Column():
|
134 |
+
files = gr.Files(
|
135 |
+
label="Drag 1 or more photos of your face",
|
136 |
+
file_types=["image"]
|
137 |
+
)
|
138 |
+
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
|
139 |
+
with gr.Column(visible=False) as clear_button:
|
140 |
+
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
141 |
+
prompt = gr.Textbox(
|
142 |
+
label="Prompt",
|
143 |
+
info="Try something like 'a photo of a man/woman/person'",
|
144 |
+
placeholder="A photo of a [man/woman/person]..."
|
145 |
+
)
|
146 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
|
147 |
+
style = gr.Radio(
|
148 |
+
label="Generation type",
|
149 |
+
info="For stylized try prompts like 'a watercolor painting of a woman'",
|
150 |
+
choices=["Photorealistic", "Stylized"],
|
151 |
+
value="Photorealistic"
|
152 |
+
)
|
153 |
+
model_choice = gr.Dropdown(
|
154 |
+
label="Model Choice",
|
155 |
+
choices=list(model_paths.keys()),
|
156 |
+
value="Realistic Vision V4.0"
|
157 |
+
)
|
158 |
+
submit = gr.Button("Submit")
|
159 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
160 |
+
preserve = gr.Checkbox(
|
161 |
+
label="Preserve Face Structure",
|
162 |
+
info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.",
|
163 |
+
value=True
|
164 |
+
)
|
165 |
+
face_strength = gr.Slider(
|
166 |
+
label="Face Structure strength",
|
167 |
+
info="Only applied if preserve face structure is checked",
|
168 |
+
value=1.3,
|
169 |
+
step=0.1,
|
170 |
+
minimum=0,
|
171 |
+
maximum=3
|
172 |
+
)
|
173 |
+
likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
|
174 |
+
nfaa_negative_prompts = gr.Textbox(
|
175 |
+
label="Appended Negative Prompts",
|
176 |
+
info="Negative prompts to steer generations towards safe for all audiences outputs",
|
177 |
+
value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through"
|
178 |
+
)
|
179 |
+
with gr.Column():
|
180 |
+
gallery = gr.Gallery(label="Generated Images")
|
181 |
+
style.change(fn=change_style,
|
182 |
+
inputs=style,
|
183 |
+
outputs=[preserve, face_strength, likeness_strength])
|
184 |
+
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
|
185 |
+
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
|
186 |
+
submit.click(
|
187 |
+
fn=generate_image,
|
188 |
+
inputs=[files, prompt, negative_prompt, preserve, face_strength, likeness_strength, nfaa_negative_prompts, model_choice],
|
189 |
+
outputs=gallery
|
190 |
+
)
|
191 |
+
|
192 |
+
gr.Markdown("")
|
193 |
+
|
194 |
+
demo.launch()
|