Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,160 +1,182 @@
|
|
1 |
-
import torch
|
2 |
-
import spaces
|
3 |
-
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
4 |
-
from transformers import AutoFeatureExtractor
|
5 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
6 |
-
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from insightface.app import FaceAnalysis
|
9 |
-
from insightface.utils import face_align
|
10 |
import gradio as gr
|
11 |
-
import
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
base_model_paths = {
|
14 |
-
"
|
15 |
-
"
|
16 |
"Deliberate": "Yntec/Deliberate",
|
17 |
-
"
|
18 |
-
"
|
19 |
-
"
|
20 |
}
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
pipe = load_model(base_model_path)
|
69 |
-
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
70 |
-
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)
|
71 |
-
|
72 |
-
faceid_all_embeds = []
|
73 |
-
first_iteration = True
|
74 |
-
for image in images:
|
75 |
-
face = cv2.imread(image)
|
76 |
-
faces = app.get(face)
|
77 |
-
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
78 |
-
faceid_all_embeds.append(faceid_embed)
|
79 |
-
if(first_iteration and preserve_face_structure):
|
80 |
-
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
81 |
-
first_iteration = False
|
82 |
-
|
83 |
-
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def change_style(style):
|
|
|
|
|
|
|
103 |
if style == "Photorealistic":
|
104 |
-
return
|
105 |
else:
|
106 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
footer{display:none !important}
|
117 |
-
'''
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
with gr.Column(visible=False) as clear_button:
|
130 |
-
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
131 |
-
prompt = gr.Textbox(label="Prompt",
|
132 |
-
info="Try something like 'a photo of a man/woman/person'",
|
133 |
-
placeholder="A photo of a [man/woman/person]...")
|
134 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
|
135 |
-
style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic")
|
136 |
-
base_model = gr.Dropdown(label="Base Model", choices=list(base_model_paths.keys()), value="Realistic_Vision_V4.0_noVAE")
|
137 |
-
submit = gr.Button("Submit")
|
138 |
-
with gr.Accordion(open=False, label="Advanced Options"):
|
139 |
-
preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True)
|
140 |
-
face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=3)
|
141 |
-
likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
|
142 |
-
nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through")
|
143 |
-
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100)
|
144 |
-
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20)
|
145 |
-
width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024)
|
146 |
-
height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024)
|
147 |
with gr.Column():
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
import fal_client
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Set up your Fal API key as an environment variable
|
10 |
+
os.environ["FAL_KEY"] = "b6fa8d06-4225-4ec3-9aaf-4d01e960d899:cc6a52d0fc818c6f892b2760fd341ee4"
|
11 |
+
fal_client.api_key = os.environ["FAL_KEY"]
|
12 |
+
|
13 |
+
# Model choices (base models)
|
14 |
base_model_paths = {
|
15 |
+
"Realistic Vision V4": "SG161222/Realistic_Vision_V4.0_noVAE",
|
16 |
+
"Realistic Vision V6": "SG161222/Realistic_Vision_V6.0_B1_noVAE",
|
17 |
"Deliberate": "Yntec/Deliberate",
|
18 |
+
"Deliberate V2": "Yntec/Deliberate2",
|
19 |
+
"Dreamshaper 8": "Lykon/dreamshaper-8",
|
20 |
+
"Epic Realism": "emilianJR/epiCRealism"
|
21 |
}
|
22 |
|
23 |
+
async def generate_image(image_url: str, prompt: str, negative_prompt: str, model_type: str, base_model: str, seed: int, guidance_scale: float, num_inference_steps: int, num_samples: int, width: int, height: int):
|
24 |
+
"""
|
25 |
+
Submit the image generation process using the fal_client's submit method with the ip-adapter-face-id model.
|
26 |
+
"""
|
27 |
+
try:
|
28 |
+
handler = fal_client.submit(
|
29 |
+
"fal-ai/ip-adapter-face-id",
|
30 |
+
arguments={
|
31 |
+
"model_type": model_type,
|
32 |
+
"prompt": prompt,
|
33 |
+
"face_image_url": image_url,
|
34 |
+
"negative_prompt": negative_prompt,
|
35 |
+
"seed": seed,
|
36 |
+
"guidance_scale": guidance_scale,
|
37 |
+
"num_inference_steps": num_inference_steps,
|
38 |
+
"num_samples": num_samples,
|
39 |
+
"width": width,
|
40 |
+
"height": height,
|
41 |
+
"base_1_5_model_repo": base_model_paths[base_model], # Base model selected by user
|
42 |
+
"base_sdxl_model_repo": "SG161222/RealVisXL_V3.0", # SDXL model as default
|
43 |
+
},
|
44 |
+
)
|
45 |
+
# Retrieve the result synchronously
|
46 |
+
result = handler.get()
|
47 |
+
|
48 |
+
if "image" in result and "url" in result["image"]:
|
49 |
+
return result["image"] # Return the full image information dictionary
|
50 |
+
else:
|
51 |
+
return None
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error generating image: {e}")
|
54 |
+
return None
|
55 |
+
|
56 |
+
def fetch_image_from_url(url: str) -> Image.Image:
|
57 |
+
"""
|
58 |
+
Download the image from the given URL and return it as a PIL Image.
|
59 |
+
"""
|
60 |
+
response = requests.get(url)
|
61 |
+
return Image.open(io.BytesIO(response.content))
|
62 |
+
|
63 |
+
async def process_inputs(image: Image.Image, prompt: str, negative_prompt: str, model_type: str, base_model: str, seed: int, guidance_scale: float, num_inference_steps: int, num_samples: int, width: int, height: int):
|
64 |
+
"""
|
65 |
+
Asynchronous function to handle image upload, prompt inputs and generate the final image.
|
66 |
+
"""
|
67 |
+
# Upload the image and get a valid URL
|
68 |
+
image_url = await upload_image_to_server(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
if not image_url:
|
71 |
+
return None
|
72 |
|
73 |
+
# Run the image generation
|
74 |
+
image_info = await generate_image(image_url, prompt, negative_prompt, model_type, base_model, seed, guidance_scale, num_inference_steps, num_samples, width, height)
|
75 |
+
|
76 |
+
if image_info and "url" in image_info:
|
77 |
+
return fetch_image_from_url(image_info["url"]), image_info # Return both the image and the metadata
|
78 |
+
|
79 |
+
return None, None
|
80 |
+
|
81 |
+
async def upload_image_to_server(image: Image.Image) -> str:
|
82 |
+
"""
|
83 |
+
Upload an image to the fal_client and return the uploaded image URL.
|
84 |
+
"""
|
85 |
+
# Convert PIL image to byte stream for upload
|
86 |
+
byte_arr = io.BytesIO()
|
87 |
+
image.save(byte_arr, format='PNG')
|
88 |
+
byte_arr.seek(0)
|
89 |
+
|
90 |
+
# Convert BytesIO to a file-like object that fal_client can handle
|
91 |
+
with open("temp_image.png", "wb") as f:
|
92 |
+
f.write(byte_arr.getvalue())
|
93 |
+
|
94 |
+
# Upload the image using fal_client's asynchronous method
|
95 |
+
try:
|
96 |
+
upload_url = await fal_client.upload_file_async("temp_image.png")
|
97 |
+
return upload_url
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Error uploading image: {e}")
|
100 |
+
return ""
|
101 |
|
102 |
def change_style(style):
|
103 |
+
"""
|
104 |
+
Changes the style for 'Photorealistic' or 'Stylized' generation type.
|
105 |
+
"""
|
106 |
if style == "Photorealistic":
|
107 |
+
return gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)
|
108 |
else:
|
109 |
+
return gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)
|
110 |
+
|
111 |
+
def gradio_interface(image, prompt, negative_prompt, model_type, base_model, seed, guidance_scale, num_inference_steps, num_samples, width, height):
|
112 |
+
"""
|
113 |
+
Wrapper function to run asynchronous code in a synchronous environment like Gradio.
|
114 |
+
"""
|
115 |
+
loop = asyncio.new_event_loop()
|
116 |
+
asyncio.set_event_loop(loop)
|
117 |
+
|
118 |
+
# Execute the async process_inputs function
|
119 |
+
result_image, image_info = loop.run_until_complete(process_inputs(image, prompt, negative_prompt, model_type, base_model, seed, guidance_scale, num_inference_steps, num_samples, width, height))
|
120 |
+
if result_image:
|
121 |
+
# Display both the image and metadata
|
122 |
+
metadata = f"File Name: {image_info['file_name']}\nFile Size: {image_info['file_size']} bytes\nDimensions: {image_info['width']}x{image_info['height']} px\nSeed: {image_info.get('seed', 'N/A')}"
|
123 |
+
return result_image, metadata
|
124 |
+
return None, "Error generating image"
|
125 |
+
|
126 |
+
# Gradio Interface
|
127 |
+
with gr.Blocks() as demo:
|
128 |
+
gr.Markdown("## Image Generation with Fal API and Gradio")
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
+
# Image input
|
133 |
+
image_input = gr.Image(label="Upload Image", type="pil")
|
134 |
+
|
135 |
+
# Textbox for prompt
|
136 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate", lines=2)
|
137 |
+
|
138 |
+
# Textbox for negative prompt
|
139 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", placeholder="Describe elements to avoid", lines=2)
|
140 |
+
|
141 |
+
# Radio buttons for model type (Photorealistic or Stylized)
|
142 |
+
style = gr.Radio(label="Generation type", choices=["Photorealistic", "Stylized"], value="Photorealistic")
|
143 |
+
|
144 |
+
# Dropdown for selecting the base model
|
145 |
+
base_model = gr.Dropdown(label="Base Model", choices=list(base_model_paths.keys()), value="Realistic Vision V4")
|
146 |
|
147 |
+
# Seed input
|
148 |
+
seed_input = gr.Number(label="Seed", value=42, precision=0)
|
149 |
|
150 |
+
# Guidance scale slider
|
151 |
+
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20)
|
152 |
|
153 |
+
# Inference steps slider
|
154 |
+
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=50, step=1, minimum=10, maximum=100)
|
|
|
|
|
155 |
|
156 |
+
# Samples slider
|
157 |
+
num_samples = gr.Slider(label="Number of Samples", value=4, step=1, minimum=1, maximum=10)
|
158 |
+
|
159 |
+
# Image dimensions sliders
|
160 |
+
width = gr.Slider(label="Width", value=1024, step=64, minimum=256, maximum=1024)
|
161 |
+
height = gr.Slider(label="Height", value=1024, step=64, minimum=256, maximum=1024)
|
162 |
+
|
163 |
+
# Button to trigger image generation
|
164 |
+
generate_button = gr.Button("Generate Image")
|
165 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
with gr.Column():
|
167 |
+
# Display generated image and metadata
|
168 |
+
generated_image = gr.Image(label="Generated Image")
|
169 |
+
metadata_output = gr.Textbox(label="Image Metadata", interactive=False, lines=6)
|
170 |
+
|
171 |
+
# Style change functionality
|
172 |
+
style.change(fn=change_style, inputs=style, outputs=[guidance_scale, num_samples, width])
|
173 |
+
|
174 |
+
# Define the interaction between inputs and output
|
175 |
+
generate_button.click(
|
176 |
+
fn=gradio_interface,
|
177 |
+
inputs=[image_input, prompt_input, negative_prompt_input, style, base_model, seed_input, guidance_scale, num_inference_steps, num_samples, width, height],
|
178 |
+
outputs=[generated_image, metadata_output]
|
179 |
+
)
|
180 |
+
|
181 |
+
# Launch the Gradio interface
|
182 |
+
demo.launch()
|