rt torch import spaces from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from transformers import AutoFeatureExtractor from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from insightface.utils import face_align import gradio as gr import cv2 base_model_paths = { "RealisticVisionV4": "SG161222/Realistic_Vision_V4.0_noVAE", "RealisticVisionV6": "SG161222/Realistic_Vision_V6.0_B1_noVAE", "Deliberate": "Yntec/Deliberate", "DeliberateV2": "Yntec/Deliberate2", "Dreamshaper8": "Lykon/dreamshaper-8", "EpicRealism": "emilianJR/epiCRealism" } vae_model_path = "stabilityai/sd-vae-ft-mse" image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") safety_model_id = "CompVis/stable-diffusion-safety-checker" safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) device = "cuda" noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) def load_model(base_model_path): pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, vae=vae, feature_extractor=safety_feature_extractor, safety_checker=None # <--- Disable safety checker ).to(device) return pipe ip_model = None ip_model_plus = None app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) cv2.setNumThreads(1) @spaces.GPU(enable_queue=True) def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, base_model, num_inference_steps, guidance_scale, width, height, progress=gr.Progress(track_tqdm=True)): global ip_model, ip_model_plus base_model_path = base_model_paths[base_model] pipe = load_model(base_model_path) ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) faceid_all_embeds = [] first_iteration = True for image in images: face = cv2.imread(image) faces = app.get(face) faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) faceid_all_embeds.append(faceid_embed) if(first_iteration and preserve_face_structure): face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face first_iteration = False average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}" if(not preserve_face_structure): print("Generating normal") image = ip_model.generate( prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding, scale=likeness_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ) else: print("Generating plus") image = ip_model_plus.generate( prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding, scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ) print(image) return image def change_style(style): if style == "Photorealistic": return(gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)) else: return(gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)) def swap_to_gallery(images): return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) def remove_back_to_files(): return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) css = ''' h1{margin-bottom: 0 !important} footer{display:none !important} ''' with gr.Blocks(css=css) as demo: gr.Markdown("") gr.Markdown("") with gr.Row(): with gr.Column(): files = gr.Files( label="Drag 1 or more photos of your face", file_types=["image"] ) uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125) with gr.Column(visible=False) as clear_button: remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm") prompt = gr.Textbox(label="Prompt", info="Try something like 'a photo of a man/woman/person'", placeholder="A photo of a [man/woman/person]...") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality") style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic") base_model = gr.Dropdown(label="Base Model", choices=list(base_model_paths.keys()), value="Realistic_Vision_V4.0_noVAE") submit = gr.Button("Submit") with gr.Accordion(open=False, label="Advanced Options"): preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True) face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=3) likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5) nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through") num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100) guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20) width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024) height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024) with gr.Column(): gallery = gr.Gallery(label="Generated Images") style.change(fn=change_style, inputs=style, outputs=[preserve, face_strength, likeness_strength]) files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]) remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]) submit.click(fn=generate_image, inputs=[files,prompt,negative_prompt,preserve, face_strength, likeness_strength, nfaa_negative_prompts, base_model, num_inference_steps, guidance_scale, width, height], outputs=gallery) gr.Markdown("") demo.launch()