File size: 3,701 Bytes
d385752
662454f
 
 
604aca4
008d8f8
 
 
 
60a49af
662454f
 
d385752
662454f
 
60a49af
662454f
 
 
 
d385752
662454f
008d8f8
 
662454f
60a49af
662454f
7cb2b74
008d8f8
60a49af
662454f
008d8f8
85e0fcf
008d8f8
85e0fcf
008d8f8
85e0fcf
 
008d8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0c05d
008d8f8
2c0c05d
 
008d8f8
2c0c05d
 
 
 
 
 
008d8f8
2c0c05d
 
008d8f8
2c0c05d
 
662454f
 
85e0fcf
 
008d8f8
85e0fcf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Initialize the DataFrame in the session state if it doesn't exist
if 'expenses_df' not in st.session_state:
    columns = ['Date', 'Category', 'Description', 'Amount']
    st.session_state.expenses_df = pd.DataFrame(columns=columns)

# Streamlit app layout
st.title('Expense Tracker')

# Add new expense entry
st.subheader("Add New Expense")

date = st.date_input("Date")
category = st.selectbox("Category", ['Food', 'Transport', 'Entertainment', 'Other'])
description = st.text_input("Description")
amount = st.number_input("Amount", min_value=0.0, format="%.2f")

if st.button("Add Expense"):
    new_expense = pd.DataFrame([[date, category, description, amount]], columns=st.session_state.expenses_df.columns)
    st.session_state.expenses_df = pd.concat([st.session_state.expenses_df, new_expense], ignore_index=True)
    st.success(f"Added expense: {description} - ${amount:.2f}")

# Display all expenses
st.subheader("Expenses List")
st.write(st.session_state.expenses_df)

# Ensure 'Amount' is numeric (convert if necessary)
st.session_state.expenses_df['Amount'] = pd.to_numeric(st.session_state.expenses_df['Amount'], errors='coerce')

# Show category summary
st.subheader("Category Summary")
category_summary = st.session_state.expenses_df.groupby('Category')['Amount'].sum().reset_index()
st.write(category_summary)

# Generate individual bar and pie charts per Category (grouped by Description)
st.subheader("Bar Charts and Pie Charts per Category")

# Get all unique categories
unique_categories = st.session_state.expenses_df['Category'].unique()

# Loop through each unique category to plot bar and pie charts by description
for category in unique_categories:
    category_df = st.session_state.expenses_df[st.session_state.expenses_df['Category'] == category]

    # Bar chart: Expense distribution by description for this category
    fig, ax = plt.subplots(figsize=(10, 6))
    sns.barplot(x='Description', y='Amount', data=category_df, ax=ax)
    ax.set_title(f'Total Expenses for Category: {category}')
    ax.set_xlabel('Description')
    ax.set_ylabel('Amount Spent ($)')
    ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
    st.pyplot(fig)

    # Pie chart: Expense distribution by description for this category
    fig, ax = plt.subplots(figsize=(8, 8))
    description_summary = category_df.groupby('Description')['Amount'].sum().reset_index()
    description_summary.set_index('Description')['Amount'].plot(kind='pie', autopct='%1.1f%%', legend=False, ax=ax)
    ax.set_title(f'Expense Distribution for Category: {category}')
    ax.set_ylabel('')  # Hide ylabel
    st.pyplot(fig)

# Create overall bar and pie chart for all categories

# Bar chart for total expenses by category
st.subheader("Overall Expenses by Category")
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x='Category', y='Amount', data=category_summary, ax=ax)
ax.set_title('Total Expenses by Category (Overall)')
ax.set_xlabel('Category')
ax.set_ylabel('Amount Spent ($)')
ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
st.pyplot(fig)

# Pie chart for expense distribution by category
st.subheader("Overall Expense Distribution")
fig, ax = plt.subplots(figsize=(8, 8))
category_summary.set_index('Category')['Amount'].plot(kind='pie', autopct='%1.1f%%', legend=False, ax=ax)
ax.set_title('Expense Distribution by Category (Overall)')
ax.set_ylabel('')  # Hide ylabel
st.pyplot(fig)

# Save the expenses to a CSV file
st.download_button(
    label="Download Expenses as CSV",
    data=st.session_state.expenses_df.to_csv(index=False),
    file_name="expenses.csv",
    mime="text/csv"
)