Spaces:
Sleeping
Sleeping
File size: 3,701 Bytes
d385752 662454f 604aca4 008d8f8 60a49af 662454f d385752 662454f 60a49af 662454f d385752 662454f 008d8f8 662454f 60a49af 662454f 7cb2b74 008d8f8 60a49af 662454f 008d8f8 85e0fcf 008d8f8 85e0fcf 008d8f8 85e0fcf 008d8f8 2c0c05d 008d8f8 2c0c05d 008d8f8 2c0c05d 008d8f8 2c0c05d 008d8f8 2c0c05d 662454f 85e0fcf 008d8f8 85e0fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Initialize the DataFrame in the session state if it doesn't exist
if 'expenses_df' not in st.session_state:
columns = ['Date', 'Category', 'Description', 'Amount']
st.session_state.expenses_df = pd.DataFrame(columns=columns)
# Streamlit app layout
st.title('Expense Tracker')
# Add new expense entry
st.subheader("Add New Expense")
date = st.date_input("Date")
category = st.selectbox("Category", ['Food', 'Transport', 'Entertainment', 'Other'])
description = st.text_input("Description")
amount = st.number_input("Amount", min_value=0.0, format="%.2f")
if st.button("Add Expense"):
new_expense = pd.DataFrame([[date, category, description, amount]], columns=st.session_state.expenses_df.columns)
st.session_state.expenses_df = pd.concat([st.session_state.expenses_df, new_expense], ignore_index=True)
st.success(f"Added expense: {description} - ${amount:.2f}")
# Display all expenses
st.subheader("Expenses List")
st.write(st.session_state.expenses_df)
# Ensure 'Amount' is numeric (convert if necessary)
st.session_state.expenses_df['Amount'] = pd.to_numeric(st.session_state.expenses_df['Amount'], errors='coerce')
# Show category summary
st.subheader("Category Summary")
category_summary = st.session_state.expenses_df.groupby('Category')['Amount'].sum().reset_index()
st.write(category_summary)
# Generate individual bar and pie charts per Category (grouped by Description)
st.subheader("Bar Charts and Pie Charts per Category")
# Get all unique categories
unique_categories = st.session_state.expenses_df['Category'].unique()
# Loop through each unique category to plot bar and pie charts by description
for category in unique_categories:
category_df = st.session_state.expenses_df[st.session_state.expenses_df['Category'] == category]
# Bar chart: Expense distribution by description for this category
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x='Description', y='Amount', data=category_df, ax=ax)
ax.set_title(f'Total Expenses for Category: {category}')
ax.set_xlabel('Description')
ax.set_ylabel('Amount Spent ($)')
ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
st.pyplot(fig)
# Pie chart: Expense distribution by description for this category
fig, ax = plt.subplots(figsize=(8, 8))
description_summary = category_df.groupby('Description')['Amount'].sum().reset_index()
description_summary.set_index('Description')['Amount'].plot(kind='pie', autopct='%1.1f%%', legend=False, ax=ax)
ax.set_title(f'Expense Distribution for Category: {category}')
ax.set_ylabel('') # Hide ylabel
st.pyplot(fig)
# Create overall bar and pie chart for all categories
# Bar chart for total expenses by category
st.subheader("Overall Expenses by Category")
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x='Category', y='Amount', data=category_summary, ax=ax)
ax.set_title('Total Expenses by Category (Overall)')
ax.set_xlabel('Category')
ax.set_ylabel('Amount Spent ($)')
ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
st.pyplot(fig)
# Pie chart for expense distribution by category
st.subheader("Overall Expense Distribution")
fig, ax = plt.subplots(figsize=(8, 8))
category_summary.set_index('Category')['Amount'].plot(kind='pie', autopct='%1.1f%%', legend=False, ax=ax)
ax.set_title('Expense Distribution by Category (Overall)')
ax.set_ylabel('') # Hide ylabel
st.pyplot(fig)
# Save the expenses to a CSV file
st.download_button(
label="Download Expenses as CSV",
data=st.session_state.expenses_df.to_csv(index=False),
file_name="expenses.csv",
mime="text/csv"
)
|