File size: 3,200 Bytes
0dfb40d
 
 
3adf8d4
0e60a05
0dfb40d
4561153
64eeeed
a35a874
89e4f8f
0dfb40d
64eeeed
 
73396ce
54dcd4b
 
64eeeed
0dfb40d
 
 
 
 
 
 
 
 
81a0426
0dfb40d
81a0426
0dfb40d
81a0426
0dfb40d
81a0426
0dfb40d
 
 
 
 
 
 
 
 
 
0e60a05
 
 
0dfb40d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e2400
0dfb40d
 
cf306d8
 
0e60a05
 
 
ec01724
671dbb5
 
01a3c1e
6ce18df
54dcd4b
0dfb40d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import matplotlib.pyplot as plt
import random
import gradio as gr
import numpy as np
import pandas as pd

def generate_random_walk(iters, step_size = 1, random_seed = None):
    # random.seed(random_seed)
    iters = int(iters)
    directions = ['east', 'north', 'west', 'south']
    start_point = [0, 0]

    if random_seed is None:
        random_seed = random.randint(1, 100000)
    else:
        random_seed = random_seed
        
    def distance_from_start(final_coord, start_coord, round_to=2):
        return round(np.sqrt((final_coord[0] - start_coord[0])**2 + (final_coord[1] - start_coord[1])**2), round_to)
    
    def step_addition(old_coord, step):
        return [sum(x) for x in zip(old_coord, step)]
    
    def step_determination():
        direction = random.choice(directions)
        if direction == 'east':
            return [1*step_size, 0]
        elif direction == 'west':
            return [-1*step_size, 0]
        elif direction == 'north':
            return [0, 1*step_size]
        elif direction == 'south':
            return [0, -1*step_size]
    
    coordinate_list = [start_point]
    
    for i in range(iters):
        new_step = step_determination()
        new_coordinate = step_addition(coordinate_list[-1], new_step)
        coordinate_list.append(new_coordinate)
    
    x = [i[0] for i in coordinate_list]
    y = [i[1] for i in coordinate_list]
    df = pd.DataFrame({'x':x,'y':y})
    csv_file = "2d_random_walk_coordinates.csv"
    df.to_csv(csv_file, index=False)
    
    fig, ax = plt.subplots(1)
    
    base_marker_size = 10
    markersize = base_marker_size / np.sqrt(iters)
    
    ax.plot(x, y, marker='o', markersize=markersize, linestyle='None')
    
    ax.plot(x[0], y[0], marker='o', markersize=5, color="red")
    ax.plot(x[-1], y[-1], marker='o', markersize=5, color="orange")
    
    ax.text(start_point[0], start_point[1], 'Start', color='red')
    ax.text(x[-1], y[-1], 'End', color='orange')
    
    x_max_index = x.index(max(x))
    x_min_index = x.index(min(x))
    y_max_index = y.index(max(y))
    y_min_index = y.index(min(y))
    
    info_text = 'Start point=' + str(start_point) + '\n'  +'End point=' + str([x[-1],y[-1]]) + '\n' +'Displacement =' + str(distance_from_start([x[-1], y[-1]], start_point)) + '\n' +'Max x = ' + str(max(x)) + '\n' + 'Min x = ' + str(min(x)) + '\n' + 'Max y = ' + str(max(y)) + '\n' + 'Min y = ' + str(min(y)) 
    ax.legend([info_text], loc='best', handlelength=0, handletextpad=0, fancybox=True, fontsize=8)
    
    plt.title( '2D Random Walk\nsteps=' + str(iters)+', step size='+ str(step_size)+ ', seed = '+str((random_seed)) )
    plt.grid()
    
    fig.canvas.draw()
    image_array = np.array(fig.canvas.renderer.buffer_rgba())

    
    return image_array, csv_file

iters = gr.Number(value=1e5,label="How many random steps?")
step_size = gr.Number(value=1,label="Step size")
random_seed = gr.Number(value=42,label="Random seed (Delete it to go full random mode)")
    
iface = gr.Interface(fn=generate_random_walk, inputs=[iters, step_size, random_seed], outputs=["image","file"], title="2-D Random Walk", description="Uniform steps along NEWS directions only")
iface.launch()