File size: 5,538 Bytes
f115572
 
 
 
 
 
ec3a39e
f115572
ec3a39e
f115572
 
ec3a39e
f115572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3a39e
f115572
 
 
 
 
 
 
 
ec3a39e
f115572
 
 
ec3a39e
f115572
ec3a39e
f115572
 
 
 
 
 
ec3a39e
f115572
 
b934a0e
 
 
f115572
 
 
 
 
 
 
 
c878be0
f115572
ec3a39e
f115572
 
 
 
35908ef
f115572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35908ef
f115572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcf43ac
 
f115572
 
fcf43ac
f115572
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import matplotlib.pyplot as plt
import random
import numpy as np
import pandas as pd
from matplotlib.lines import Line2D

#single_random_walk takes a single particle and plots its trajectory on the axis passed to it
def single_random_walk(iters, agent_number, ax, step_size = 1, random_seed = None):
    if random_seed: 
        random.seed(random_seed)

    iters = int(iters) #Because for some reason, the input from Gradio input components is in float
    directions = ['east', 'north', 'west', 'south']
    start_point = [0, 0]
    
    def distance_from_start(final_coord, start_coord, round_to=2):
        return round(np.sqrt((final_coord[0] - start_coord[0])**2 + (final_coord[1] - start_coord[1])**2), round_to)
    
    def step_addition(old_coord, step):
        return [sum(x) for x in zip(old_coord, step)]
    
    def step_determination():
        direction = random.choice(directions)
        if direction == 'east':
            return [1*step_size, 0]
        elif direction == 'west':
            return [-1*step_size, 0]
        elif direction == 'north':
            return [0, 1*step_size]
        elif direction == 'south':
            return [0, -1*step_size]
    
    coordinate_list = [start_point]
    
    for _ in range(iters): #Key part that decides the trajectory of the agent
        new_step = step_determination()
        new_coordinate = step_addition(coordinate_list[-1], new_step)
        coordinate_list.append(new_coordinate)
    
    x = [i[0] for i in coordinate_list]
    y = [i[1] for i in coordinate_list]
    df = pd.DataFrame({'x':x,'y':y})
    
    #This to determine the markersize. This is is only a makeshift solution.
    base_marker_size = 10
    markersize = base_marker_size / np.sqrt(iters)

    #Plot on the axis passed, do not make a new figure.
    plot = ax.plot(x, y, marker='o', markersize=markersize, linestyle='None', alpha=0.5, label = 'Agent {i}'.format(i=agent_number+1))
    color = plot[0].get_color() #Get the color so that we can add label with proper colors later
    ax.plot(x[-1], y[-1], marker='o', markersize=5, color = 'black')
    ax.text(x[-1], y[-1], 'End {i}'.format(i=agent_number+1), color = 'black', alpha=1.0)
    
    return ax, df, color


#multi_agent_walk iteratively calls the single_random_walk function to plot different trajectories on the same axis.
def multi_agent_walk(agent_count, iters, step_size = 1, random_seed = None):
    assert agent_count >= 1, "Number of agents must be >= than 1"
    agent_count = int(agent_count)
    iters = int(iters)
    
    def displacement_calc(df):
        x1,y1 = df.iloc[0]
        x2,y2 = df.iloc[-1]
        return np.round(np.sqrt((x2-x1)**2 + (y2-y1)**2),1)

    if random_seed is None:
        random_seed = random.randint(0,1000000)

    random_seed = int(random_seed)
    assert type(random_seed) == int, "Random seed must be an integer"
    #Generates a list of random seeds for each agent
    random.seed(random_seed)
    random_numbers = [random.randint(0,100000) for _ in range(agent_count)]

    
    fig, ax = plt.subplots(figsize=(8,8))
    color_list = []

    for i in range(agent_count):
        if i == 0:
            ax, df, color = single_random_walk(iters=iters, ax=ax, step_size=step_size, agent_number=i, random_seed=random_numbers[i])
            color_list.append(color)
            
        else:
            ax, df_new, color = single_random_walk(iters=iters, ax=ax, step_size=step_size, agent_number=i, random_seed=random_numbers[i])
            df = pd.concat([df,df_new], axis=1)
            x_columns = [f'x{i}' for i in range(1, i+2)]
            y_columns = [f'y{i}' for i in range(1, i+2)]
            new_column_names = [val for pair in zip(x_columns, y_columns) for val in pair] 
            df.columns = new_column_names
            color_list.append(color)

    ax.plot(0,0, marker='X', markersize=8, color='black')
    ax.text(0, 0, 'Start (0,0)')

    plt.grid()
    plt.title('Random 2D Walk with {} agents\n #Steps = {}, Step size = {}, random seed = {}\nAll agents start from the origin'.format(agent_count, iters, step_size, random_seed))
    
    displacement = [displacement_calc(df.iloc[:,[i,i+1]]) for i in range(0,agent_count*2,2)]
    end_point = [(df.iloc[-1,i]) for i in range(0,agent_count*2,2)]

    end_point = [(df.iloc[-1,i], df.iloc[-1,i+1]) for i in range(0,agent_count*2,2)]
    
    agent_number = [i+1 for i in range(agent_count)]
    legend_df = pd.DataFrame({'#':agent_number, 'dis.':displacement, 'End Point':end_point, })
    info_box = legend_df.to_string(index=False)

    ax.text(0.01, 0.99, info_box, 
            transform=ax.transAxes, 
            verticalalignment='top', 
            bbox=dict(boxstyle='round', facecolor='white', alpha=0.5)
           )
    
    lines = []
    for i in range(len(color_list)):
        lines.append(Line2D([0], [0], color=color_list[i], lw=9, linestyle=':'))

    labels = [f'Agent {i+1}' for i in range(len(color_list))]
    plt.legend(lines, labels, 
               loc='best', 
               handlelength=1.01, 
               handletextpad=0.21, 
               fancybox=True, 
               fontsize=10,
               )
    
    fig.canvas.draw()
    image_array = np.array(fig.canvas.renderer.buffer_rgba())
    csv_file = "2d_random_walk_coordinates.csv"
    df.to_csv(csv_file, index=False)
    
    try:
        return image_array, csv_file
    except:
        return image_array, None


# _, df = multi_agent_walk(agent_count=9, iters=1e5, step_size=1, random_seed=123);