File size: 4,893 Bytes
f115572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import matplotlib.pyplot as plt
import random
import numpy as np
import pandas as pd
from matplotlib.lines import Line2D

def single_random_walk(iters, agent_number, ax, step_size = 1, random_seed = None):
    # random.seed(random_seed)
    if random_seed:
        random.seed(random_seed)

    iters = int(iters)
    directions = ['east', 'north', 'west', 'south']
    start_point = [0, 0]
    
    def distance_from_start(final_coord, start_coord, round_to=2):
        return round(np.sqrt((final_coord[0] - start_coord[0])**2 + (final_coord[1] - start_coord[1])**2), round_to)
    
    def step_addition(old_coord, step):
        return [sum(x) for x in zip(old_coord, step)]
    
    def step_determination():
        direction = random.choice(directions)
        if direction == 'east':
            return [1*step_size, 0]
        elif direction == 'west':
            return [-1*step_size, 0]
        elif direction == 'north':
            return [0, 1*step_size]
        elif direction == 'south':
            return [0, -1*step_size]
    
    coordinate_list = [start_point]
    
    for _ in range(iters):
        new_step = step_determination()
        new_coordinate = step_addition(coordinate_list[-1], new_step)
        coordinate_list.append(new_coordinate)
    
    x = [i[0] for i in coordinate_list]
    y = [i[1] for i in coordinate_list]
    df = pd.DataFrame({'x':x,'y':y})
    

    #Add the axis from the argument to the figure
    base_marker_size = 10
    markersize = base_marker_size / np.sqrt(iters)

    plot = ax.plot(x, y, marker='o', markersize=markersize, linestyle='None', alpha=0.5, label = 'Agent {i}'.format(i=agent_number+1))
    color = plot[0].get_color()
    ax.plot(x[-1], y[-1], marker='o', markersize=5, color = 'black')
    ax.text(x[-1], y[-1], 'End {i}'.format(i=agent_number+1), color = 'black', alpha=1.0)
    
    return ax, df, color


def multi_agent_walk(agent_count, iters, step_size = 1, random_seed = None):
    assert agent_count >= 1, "Number of agents must be >= than 1"

    def displacement_calc(df):
        x1,y1 = df.iloc[0]
        x2,y2 = df.iloc[-1]
        return np.round(np.sqrt((x2-x1)**2 + (y2-y1)**2),1)

    if random_seed is None:
        random_seed = random.randint(0,1000000)

    assert type(random_seed) == int, "Random seed must be an integer"
    #Generate a list of random seeds for each agent
    random.seed(random_seed)
    random_numbers = [random.randint(0,100000) for _ in range(agent_count)]

    
    fig, ax = plt.subplots(figsize=(8,8))
    color_list = []

    for i in range(agent_count):
        if i == 0:
            ax, df, color = single_random_walk(iters=iters, ax=ax, step_size=step_size, agent_number=i, random_seed=random_numbers[i])
            color_list.append(color)
            
        else:
            ax, df_new, color = single_random_walk(iters=iters, ax=ax, step_size=step_size, agent_number=i, random_seed=random_numbers[i])
            df = pd.concat([df,df_new], axis=1)
            x_columns = [f'x{i}' for i in range(1, i+2)]
            y_columns = [f'y{i}' for i in range(1, i+2)]
            new_column_names = [val for pair in zip(x_columns, y_columns) for val in pair] 
            df.columns = new_column_names
            color_list.append(color)

    ax.plot(0,0, marker='X', markersize=8, color='black')
    ax.text(0, 0, 'Start (0,0)')

    plt.grid()
    plt.title('Random 2D Walk with {} agents\n #Steps = {}, Step size = {}, random seed = {}\nAll agents start from the origin'.format(agent_count, iters, step_size, random_seed))
    
    displacement = [displacement_calc(df.iloc[:,[i,i+1]]) for i in range(0,agent_count*2,2)]
    end_point = [(df.iloc[-1,i]) for i in range(0,agent_count*2,2)]

    end_point = [(df.iloc[-1,i], df.iloc[-1,i+1]) for i in range(0,agent_count*2,2)]
    
    agent_number = [i+1 for i in range(agent_count)]
    legend_df = pd.DataFrame({'#':agent_number, 'dis.':displacement, 'End Point':end_point, })
    info_box = legend_df.to_string(index=False)

    ax.text(1.01, 0.99, info_box, 
            transform=ax.transAxes, 
            verticalalignment='top', 
            bbox=dict(boxstyle='round', facecolor='white', alpha=0.5)
           )
    
    lines = []
    for i in range(len(color_list)):
        lines.append(Line2D([0], [0], color=color_list[i], lw=9, linestyle=':'))

    labels = [f'Agent {i+1}' for i in range(len(color_list))]
    plt.legend(lines, labels, 
               loc='best', 
               handlelength=1.01, 
               handletextpad=0.21, 
               fancybox=True, 
               fontsize=10,
               )
    
    fig.canvas.draw()
    image_array = np.array(fig.canvas.renderer.buffer_rgba())
    
    try:
        return image_array, df
    except:
        return image_array, None


# _, df = multi_agent_walk(agent_count=9, iters=1e5, step_size=1, random_seed=123);