DebasishDhal99 commited on
Commit
f7450ea
·
1 Parent(s): a0fdaee

Decluttering the main app file

Browse files
Files changed (1) hide show
  1. app.py +1 -72
app.py CHANGED
@@ -4,78 +4,7 @@ import gradio as gr
4
  import numpy as np
5
  import pandas as pd
6
 
7
- def generate_random_walk(iters, step_size = 1, random_seed = None):
8
- # random.seed(random_seed)
9
- iters = int(iters)
10
- directions = ['east', 'north', 'west', 'south']
11
- start_point = [0, 0]
12
-
13
- if random_seed is None:
14
- random_seed = random.randint(1, 100000)
15
- else:
16
- random_seed = random_seed
17
-
18
- random.seed(random_seed)
19
-
20
- def distance_from_start(final_coord, start_coord, round_to=2):
21
- return round(np.sqrt((final_coord[0] - start_coord[0])**2 + (final_coord[1] - start_coord[1])**2), round_to)
22
-
23
- def step_addition(old_coord, step):
24
- return [sum(x) for x in zip(old_coord, step)]
25
-
26
- def step_determination():
27
- direction = random.choice(directions)
28
- if direction == 'east':
29
- return [1*step_size, 0]
30
- elif direction == 'west':
31
- return [-1*step_size, 0]
32
- elif direction == 'north':
33
- return [0, 1*step_size]
34
- elif direction == 'south':
35
- return [0, -1*step_size]
36
-
37
- coordinate_list = [start_point]
38
-
39
- for i in range(iters):
40
- new_step = step_determination()
41
- new_coordinate = step_addition(coordinate_list[-1], new_step)
42
- coordinate_list.append(new_coordinate)
43
-
44
- x = [i[0] for i in coordinate_list]
45
- y = [i[1] for i in coordinate_list]
46
- df = pd.DataFrame({'x':x,'y':y})
47
- csv_file = "2d_random_walk_coordinates.csv"
48
- df.to_csv(csv_file, index=False)
49
-
50
- fig, ax = plt.subplots(1)
51
-
52
- base_marker_size = 10
53
- markersize = base_marker_size / np.sqrt(iters)
54
-
55
- ax.plot(x, y, marker='o', markersize=markersize, linestyle='None')
56
-
57
- ax.plot(x[0], y[0], marker='o', markersize=5, color="red")
58
- ax.plot(x[-1], y[-1], marker='o', markersize=5, color="orange")
59
-
60
- ax.text(start_point[0], start_point[1], 'Start', color='red')
61
- ax.text(x[-1], y[-1], 'End', color='orange')
62
-
63
- x_max_index = x.index(max(x))
64
- x_min_index = x.index(min(x))
65
- y_max_index = y.index(max(y))
66
- y_min_index = y.index(min(y))
67
-
68
- info_text = 'Start point=' + str(start_point) + '\n' +'End point=' + str([x[-1],y[-1]]) + '\n' +'Displacement =' + str(distance_from_start([x[-1], y[-1]], start_point)) + '\n' +'Max x = ' + str(max(x)) + '\n' + 'Min x = ' + str(min(x)) + '\n' + 'Max y = ' + str(max(y)) + '\n' + 'Min y = ' + str(min(y))
69
- ax.legend([info_text], loc='best', handlelength=0, handletextpad=0, fancybox=True, fontsize=8)
70
-
71
- plt.title( '2D Random Walk\nsteps=' + str(iters)+', step size='+ str(step_size)+ ', seed = '+str((random_seed)) )
72
- plt.grid()
73
-
74
- fig.canvas.draw()
75
- image_array = np.array(fig.canvas.renderer.buffer_rgba())
76
-
77
-
78
- return image_array, csv_file
79
 
80
  iters = gr.Number(value=1e6,label="How many random steps?")
81
  step_size = gr.Number(value=1,label="Step size")
 
4
  import numpy as np
5
  import pandas as pd
6
 
7
+ from single_agent_2D import generate_random_walk
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  iters = gr.Number(value=1e6,label="How many random steps?")
10
  step_size = gr.Number(value=1,label="Step size")