import matplotlib.pyplot as plt import random import gradio as gr import numpy as np import pandas as pd def generate_random_walk(iters, step_size = 1, random_seed = None): # random.seed(random_seed) iters = int(iters) directions = ['east', 'north', 'west', 'south'] start_point = [0, 0] if random_seed is None: random_seed = random.randint(1, 100000) else: random_seed = random_seed random.seed(random_seed) def distance_from_start(final_coord, start_coord, round_to=2): return round(np.sqrt((final_coord[0] - start_coord[0])**2 + (final_coord[1] - start_coord[1])**2), round_to) def step_addition(old_coord, step): return [sum(x) for x in zip(old_coord, step)] def step_determination(): direction = random.choice(directions) if direction == 'east': return [1*step_size, 0] elif direction == 'west': return [-1*step_size, 0] elif direction == 'north': return [0, 1*step_size] elif direction == 'south': return [0, -1*step_size] coordinate_list = [start_point] for i in range(iters): new_step = step_determination() new_coordinate = step_addition(coordinate_list[-1], new_step) coordinate_list.append(new_coordinate) x = [i[0] for i in coordinate_list] y = [i[1] for i in coordinate_list] df = pd.DataFrame({'x':x,'y':y}) csv_file = "2d_random_walk_coordinates.csv" df.to_csv(csv_file, index=False) fig, ax = plt.subplots(1) base_marker_size = 10 markersize = base_marker_size / np.sqrt(iters) ax.plot(x, y, marker='o', markersize=markersize, linestyle='None') ax.plot(x[0], y[0], marker='o', markersize=5, color="red") ax.plot(x[-1], y[-1], marker='o', markersize=5, color="orange") ax.text(start_point[0], start_point[1], 'Start', color='red') ax.text(x[-1], y[-1], 'End', color='orange') x_max_index = x.index(max(x)) x_min_index = x.index(min(x)) y_max_index = y.index(max(y)) y_min_index = y.index(min(y)) info_text = 'Start point=' + str(start_point) + '\n' +'End point=' + str([x[-1],y[-1]]) + '\n' +'Displacement =' + str(distance_from_start([x[-1], y[-1]], start_point)) + '\n' +'Max x = ' + str(max(x)) + '\n' + 'Min x = ' + str(min(x)) + '\n' + 'Max y = ' + str(max(y)) + '\n' + 'Min y = ' + str(min(y)) ax.legend([info_text], loc='best', handlelength=0, handletextpad=0, fancybox=True, fontsize=8) plt.title( '2D Random Walk\nsteps=' + str(iters)+', step size='+ str(step_size)+ ', seed = '+str((random_seed)) ) plt.grid() fig.canvas.draw() image_array = np.array(fig.canvas.renderer.buffer_rgba()) return image_array, csv_file iters = gr.Number(value=1e6,label="How many random steps?") step_size = gr.Number(value=1,label="Step size") random_seed = gr.Number(value=42,label="Random seed. Delete it to go full random mode, keep it for reproducibility") iface = gr.Interface(fn=generate_random_walk, inputs=[iters, step_size, random_seed], outputs=["image","file"], title="2-D Random Walk", description="Uniform steps along NEWS directions only") iface.launch()