Spaces:
Running
Running
harpreetsahota
commited on
Commit
·
71d010d
1
Parent(s):
31ba814
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fork of the SantaCoder demo (https://huggingface.co/spaces/bigcode/santacoder-demo)
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
5 |
+
from transformers import pipeline
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
from typing import Union, Tuple, List
|
9 |
+
|
10 |
+
|
11 |
+
description = """#<span style='color: #3264ff;'>🏎️ DeciCoder:</span> A Fast Code Generation Model💨 </p>
|
12 |
+
<span style='color: #292b47;'>Welcome to <a href="https://huggingface.co/deci/decicoder" style="color: #3264ff;">DeciCoder</a>!
|
13 |
+
DeciCoder is a 1B parameter code generation model trained on The Stack dataset and released under an Apache 2.0 license. It's capable of writing code in Python,
|
14 |
+
JavaScript, and Java. It's a code-completion model, not an instruction-tuned model; you should prompt the model with a function signature and docstring
|
15 |
+
and let it complete the rest. The model can also do infilling, specify where you would like the model to complete code with the <span style='color: #3264ff;'><FILL_HERE></span>
|
16 |
+
token.</span>"""
|
17 |
+
|
18 |
+
token = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
19 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
|
21 |
+
|
22 |
+
FIM_PREFIX = "<fim_prefix>"
|
23 |
+
FIM_MIDDLE = "<fim_middle>"
|
24 |
+
FIM_SUFFIX = "<fim_suffix>"
|
25 |
+
FIM_PAD = "<fim_pad>"
|
26 |
+
EOD = "<|endoftext|>"
|
27 |
+
|
28 |
+
GENERATION_TITLE= "<p style='font-size: 24px; color: #292b47;'>💻 Your generated code:</p>"
|
29 |
+
|
30 |
+
tokenizer_fim = AutoTokenizer.from_pretrained("Deci/test_hf_converted_decicoder", use_auth_token=token, padding_side="left")
|
31 |
+
|
32 |
+
tokenizer_fim.add_special_tokens({
|
33 |
+
"additional_special_tokens": [EOD, FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD],
|
34 |
+
"pad_token": EOD,
|
35 |
+
})
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("Deci/test_hf_converted_decicoder", use_auth_token=token)
|
38 |
+
model = AutoModelForCausalLM.from_pretrained("Deci/DeciCoder-1b", trust_remote_code=True, use_auth_token=token).to(device)
|
39 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
40 |
+
|
41 |
+
def post_processing(prompt: str, completion: str) -> str:
|
42 |
+
"""
|
43 |
+
Post-processes the generated code completion with HTML styling.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
prompt (str): The input code prompt.
|
47 |
+
completion (str): The generated code completion.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
str: The HTML-styled code with prompt and completion.
|
51 |
+
"""
|
52 |
+
completion = "<span style='color: #ff5b86;'>" + completion + "</span>"
|
53 |
+
prompt = "<span style='color: #7484b7;'>" + prompt + "</span>"
|
54 |
+
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>"
|
55 |
+
return GENERATION_TITLE + code_html
|
56 |
+
|
57 |
+
|
58 |
+
def post_processing_fim(prefix: str, middle: str, suffix: str) -> str:
|
59 |
+
"""
|
60 |
+
Post-processes the FIM (fill in the middle) generated code with HTML styling.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
prefix (str): The prefix part of the code.
|
64 |
+
middle (str): The generated middle part of the code.
|
65 |
+
suffix (str): The suffix part of the code.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
str: The HTML-styled code with prefix, middle, and suffix.
|
69 |
+
"""
|
70 |
+
prefix = "<span style='color: #7484b7;'>" + prefix + "</span>"
|
71 |
+
middle = "<span style='color: #ff5b86;'>" + middle + "</span>"
|
72 |
+
suffix = "<span style='color: #7484b7;'>" + suffix + "</span>"
|
73 |
+
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prefix}{middle}{suffix}</code></pre><br><hr>"
|
74 |
+
return GENERATION_TITLE + code_html
|
75 |
+
|
76 |
+
def fim_generation(prompt: str, max_new_tokens: int, temperature: float) -> str:
|
77 |
+
"""
|
78 |
+
Generates code for FIM (fill in the middle) task.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
prompt (str): The input code prompt with <FILL_HERE> token.
|
82 |
+
max_new_tokens (int): Maximum number of tokens to generate.
|
83 |
+
temperature (float): Sampling temperature for generation.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
str: The HTML-styled code with filled missing part.
|
87 |
+
"""
|
88 |
+
prefix = prompt.split("<FILL_HERE>")[0]
|
89 |
+
suffix = prompt.split("<FILL_HERE>")[1]
|
90 |
+
[middle] = infill((prefix, suffix), max_new_tokens, temperature)
|
91 |
+
return post_processing_fim(prefix, middle, suffix)
|
92 |
+
|
93 |
+
def extract_fim_part(s: str) -> str:
|
94 |
+
"""
|
95 |
+
Extracts the FIM (fill in the middle) part from the generated string.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
s (str): The generated string with FIM tokens.
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
str: The extracted FIM part.
|
102 |
+
"""
|
103 |
+
# Find the index of
|
104 |
+
start = s.find(FIM_MIDDLE) + len(FIM_MIDDLE)
|
105 |
+
stop = s.find(EOD, start) or len(s)
|
106 |
+
return s[start:stop]
|
107 |
+
|
108 |
+
def infill(prefix_suffix_tuples: Union[Tuple[str, str], List[Tuple[str, str]]], max_new_tokens: int, temperature: float) -> List[str]:
|
109 |
+
"""
|
110 |
+
Generates the infill for the given prefix and suffix tuples.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
prefix_suffix_tuples (Union[Tuple[str, str], List[Tuple[str, str]]]): Prefix and suffix tuples.
|
114 |
+
max_new_tokens (int): Maximum number of tokens to generate.
|
115 |
+
temperature (float): Sampling temperature for generation.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
List[str]: The list of generated infill strings.
|
119 |
+
"""
|
120 |
+
if type(prefix_suffix_tuples) == tuple:
|
121 |
+
prefix_suffix_tuples = [prefix_suffix_tuples]
|
122 |
+
|
123 |
+
prompts = [f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" for prefix, suffix in prefix_suffix_tuples]
|
124 |
+
# `return_token_type_ids=False` is essential, or we get nonsense output.
|
125 |
+
inputs = tokenizer_fim(prompts, return_tensors="pt", padding=True, return_token_type_ids=False).to(device)
|
126 |
+
with torch.no_grad():
|
127 |
+
outputs = model.generate(
|
128 |
+
**inputs,
|
129 |
+
do_sample=True,
|
130 |
+
temperature=temperature,
|
131 |
+
max_new_tokens=max_new_tokens,
|
132 |
+
pad_token_id=tokenizer.pad_token_id
|
133 |
+
)
|
134 |
+
# WARNING: cannot use skip_special_tokens, because it blows away the FIM special tokens.
|
135 |
+
return [
|
136 |
+
extract_fim_part(tokenizer_fim.decode(tensor, skip_special_tokens=False)) for tensor in outputs
|
137 |
+
]
|
138 |
+
|
139 |
+
def code_generation(prompt: str, max_new_tokens: int, temperature: float = 0.2, seed: int = 42) -> str:
|
140 |
+
"""
|
141 |
+
Generates code based on the given prompt. Handles both regular and FIM (Fill-In-Missing) generation.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
prompt (str): The input code prompt.
|
145 |
+
max_new_tokens (int): Maximum number of tokens to generate.
|
146 |
+
temperature (float, optional): Sampling temperature for generation. Defaults to 0.2.
|
147 |
+
seed (int, optional): Random seed for reproducibility. Defaults to 42.
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
str: The HTML-styled generated code.
|
151 |
+
"""
|
152 |
+
if "<FILL_HERE>" in prompt:
|
153 |
+
return fim_generation(prompt, max_new_tokens, temperature=temperature)
|
154 |
+
else:
|
155 |
+
completion = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_new_tokens)[0]['generated_text']
|
156 |
+
completion = completion[len(prompt):]
|
157 |
+
return post_processing(prompt, completion)
|
158 |
+
|
159 |
+
demo = gr.Blocks(
|
160 |
+
css=".gradio-container {background-color: white; color: #292b47}"
|
161 |
+
)
|
162 |
+
with demo:
|
163 |
+
with gr.Row():
|
164 |
+
_, colum_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1)
|
165 |
+
with colum_2:
|
166 |
+
gr.Markdown(value=description)
|
167 |
+
code = gr.Code(lines=5, language="python", label="Input code", value="def nth_element_in_fibonnaci(element):\n \"\"\"Returns the nth element of the Fibonnaci sequence.\"\"\"")
|
168 |
+
|
169 |
+
with gr.Accordion("Additional settings", open=True):
|
170 |
+
max_new_tokens= gr.Slider(
|
171 |
+
minimum=8,
|
172 |
+
maximum=2048,
|
173 |
+
step=1,
|
174 |
+
value=55,
|
175 |
+
label="Number of tokens to generate",
|
176 |
+
)
|
177 |
+
temperature = gr.Slider(
|
178 |
+
minimum=0.1,
|
179 |
+
maximum=2.5,
|
180 |
+
step=0.01,
|
181 |
+
value=0.02,
|
182 |
+
label="Temperature",
|
183 |
+
)
|
184 |
+
seed = gr.inputs.Number(
|
185 |
+
default=42,
|
186 |
+
label="Enter a seed value (integer)"
|
187 |
+
)
|
188 |
+
run = gr.Button(value="👨🏽💻 Generate code", size='lg')
|
189 |
+
output = gr.HTML(label="💻 Your generated code")
|
190 |
+
|
191 |
+
|
192 |
+
event = run.click(code_generation, [code, max_new_tokens, temperature, seed], output, api_name="predict")
|
193 |
+
gr.HTML(label="Keep in touch", value="<img src='https://huggingface.co/spaces/harpreetsahota/DeciCoder/blob/main/deci-coder-banner.png' alt='Keep in touch' style='display: block; color: #292b47; margin: auto; max-width: 800px;'>")
|
194 |
+
|
195 |
+
demo.launch()
|