# Fork of the SantaCoder demo (https://huggingface.co/spaces/bigcode/santacoder-demo) import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed from transformers import pipeline import os import torch from typing import Union, Tuple, List description = """#🏎️ DeciCoder: A Fast Code Generation ModelπŸ’¨

Welcome to DeciCoder! DeciCoder is a 1B parameter code generation model trained on The Stack dataset and released under an Apache 2.0 license. It's capable of writing code in Python, JavaScript, and Java. It's a code-completion model, not an instruction-tuned model; you should prompt the model with a function signature and docstring and let it complete the rest. The model can also do infilling, specify where you would like the model to complete code with the <FILL_HERE> token.""" token = os.environ["HUGGINGFACEHUB_API_TOKEN"] device="cuda" if torch.cuda.is_available() else "cpu" FIM_PREFIX = "" FIM_MIDDLE = "" FIM_SUFFIX = "" FIM_PAD = "" EOD = "<|endoftext|>" GENERATION_TITLE= "

πŸ’» Your generated code:

" tokenizer_fim = AutoTokenizer.from_pretrained("Deci/test_hf_converted_decicoder", use_auth_token=token, padding_side="left") tokenizer_fim.add_special_tokens({ "additional_special_tokens": [EOD, FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD], "pad_token": EOD, }) tokenizer = AutoTokenizer.from_pretrained("Deci/test_hf_converted_decicoder", use_auth_token=token) model = AutoModelForCausalLM.from_pretrained("Deci/DeciCoder-1b", trust_remote_code=True, use_auth_token=token).to(device) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) def post_processing(prompt: str, completion: str) -> str: """ Post-processes the generated code completion with HTML styling. Args: prompt (str): The input code prompt. completion (str): The generated code completion. Returns: str: The HTML-styled code with prompt and completion. """ completion = "" + completion + "" prompt = "" + prompt + "" code_html = f"


{prompt}{completion}


" return GENERATION_TITLE + code_html def post_processing_fim(prefix: str, middle: str, suffix: str) -> str: """ Post-processes the FIM (fill in the middle) generated code with HTML styling. Args: prefix (str): The prefix part of the code. middle (str): The generated middle part of the code. suffix (str): The suffix part of the code. Returns: str: The HTML-styled code with prefix, middle, and suffix. """ prefix = "" + prefix + "" middle = "" + middle + "" suffix = "" + suffix + "" code_html = f"


{prefix}{middle}{suffix}


" return GENERATION_TITLE + code_html def fim_generation(prompt: str, max_new_tokens: int, temperature: float) -> str: """ Generates code for FIM (fill in the middle) task. Args: prompt (str): The input code prompt with token. max_new_tokens (int): Maximum number of tokens to generate. temperature (float): Sampling temperature for generation. Returns: str: The HTML-styled code with filled missing part. """ prefix = prompt.split("")[0] suffix = prompt.split("")[1] [middle] = infill((prefix, suffix), max_new_tokens, temperature) return post_processing_fim(prefix, middle, suffix) def extract_fim_part(s: str) -> str: """ Extracts the FIM (fill in the middle) part from the generated string. Args: s (str): The generated string with FIM tokens. Returns: str: The extracted FIM part. """ # Find the index of start = s.find(FIM_MIDDLE) + len(FIM_MIDDLE) stop = s.find(EOD, start) or len(s) return s[start:stop] def infill(prefix_suffix_tuples: Union[Tuple[str, str], List[Tuple[str, str]]], max_new_tokens: int, temperature: float) -> List[str]: """ Generates the infill for the given prefix and suffix tuples. Args: prefix_suffix_tuples (Union[Tuple[str, str], List[Tuple[str, str]]]): Prefix and suffix tuples. max_new_tokens (int): Maximum number of tokens to generate. temperature (float): Sampling temperature for generation. Returns: List[str]: The list of generated infill strings. """ if type(prefix_suffix_tuples) == tuple: prefix_suffix_tuples = [prefix_suffix_tuples] prompts = [f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" for prefix, suffix in prefix_suffix_tuples] # `return_token_type_ids=False` is essential, or we get nonsense output. inputs = tokenizer_fim(prompts, return_tensors="pt", padding=True, return_token_type_ids=False).to(device) with torch.no_grad(): outputs = model.generate( **inputs, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, pad_token_id=tokenizer.pad_token_id ) # WARNING: cannot use skip_special_tokens, because it blows away the FIM special tokens. return [ extract_fim_part(tokenizer_fim.decode(tensor, skip_special_tokens=False)) for tensor in outputs ] def code_generation(prompt: str, max_new_tokens: int, temperature: float = 0.2, seed: int = 42) -> str: """ Generates code based on the given prompt. Handles both regular and FIM (Fill-In-Missing) generation. Args: prompt (str): The input code prompt. max_new_tokens (int): Maximum number of tokens to generate. temperature (float, optional): Sampling temperature for generation. Defaults to 0.2. seed (int, optional): Random seed for reproducibility. Defaults to 42. Returns: str: The HTML-styled generated code. """ if "" in prompt: return fim_generation(prompt, max_new_tokens, temperature=temperature) else: completion = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_new_tokens)[0]['generated_text'] completion = completion[len(prompt):] return post_processing(prompt, completion) demo = gr.Blocks( css=".gradio-container {background-color: white; color: #292b47}" ) with demo: with gr.Row(): _, colum_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1) with colum_2: gr.Markdown(value=description) code = gr.Code(lines=5, language="python", label="Input code", value="def nth_element_in_fibonnaci(element):\n \"\"\"Returns the nth element of the Fibonnaci sequence.\"\"\"") with gr.Accordion("Additional settings", open=True): max_new_tokens= gr.Slider( minimum=8, maximum=2048, step=1, value=55, label="Number of tokens to generate", ) temperature = gr.Slider( minimum=0.1, maximum=2.5, step=0.01, value=0.02, label="Temperature", ) seed = gr.inputs.Number( default=42, label="Enter a seed value (integer)" ) run = gr.Button(value="πŸ‘¨πŸ½β€πŸ’» Generate code", size='lg') output = gr.HTML(label="πŸ’» Your generated code") event = run.click(code_generation, [code, max_new_tokens, temperature, seed], output, api_name="predict") gr.HTML(label="Keep in touch", value="Keep in touch") demo.launch()