File size: 4,371 Bytes
16eaad1
 
 
 
 
 
 
 
34ed56a
16eaad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
import torch
from PIL.ImageDraw import Draw
from diffusers import StableDiffusionPipeline
from PIL import Image, ImageOps


# Load pipeline once
model_id = '/Users/tomerkeren/DeciDiffusion-v1-0'
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionPipeline.from_pretrained(model_id, custom_pipeline=model_id, torch_dtype=torch.float32)
pipe.unet = pipe.unet.from_pretrained(model_id, subfolder='flexible_unet', torch_dtype=torch.float32)
pipe = pipe.to(device)


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


def predict(_prompt: str, _steps: int = 30, _seed: int = 42, _guidance_scale: float = 7.5, _negative_prompt: str = ""):
    _negative_prompt = [_negative_prompt] if _negative_prompt else None

    output = pipe(prompt=[_prompt],
                  negative_prompt=_negative_prompt,
                  num_inference_steps=int(_steps),
                  guidance_scale=_guidance_scale,
                  generator=torch.Generator(device).manual_seed(_seed),
                  )
    output_image = output.images[0]

    # Add border beneath the image with Deci logo + prompt
    if len(_prompt) > 52:
        _prompt = _prompt[:52] + "..."

    original_image_height = output_image.size[1]
    output_image = ImageOps.expand(output_image, border=(0, 0, 0, 64), fill='white')
    deci_logo = Image.open('https://huggingface.co/spaces/Deci/DeciDiffusion-v1-0/resolve/main/deci_logo_white.png')
    output_image.paste(deci_logo, (0, original_image_height))
    Draw(output_image).text((deci_logo.size[0], original_image_height), _prompt, (127, 127, 127))
    return output_image


css = '''
.gradio-container {
  max-width: 1100px !important;
  background-image: url(https://huggingface.co/spaces/Deci/Deci-DeciDiffusionClean/resolve/main/background-image.png);
  background-size: cover;
  background-position: center center;
  background-repeat: no-repeat;
}

.footer {margin-bottom: 45px;margin-top: 35px !important;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
'''

demo = gr.Blocks(css=css, elem_id="total-container")
with demo:
    gr.HTML(read_content("header.html"))
    with gr.Row():
        with gr.Column():
            with gr.Row(mobile_collapse=False, equal_height=True):
                prompt = gr.Textbox(placeholder="Your prompt", show_label=False, elem_id="prompt", autofocus=True, lines=3, )

            with gr.Accordion(label="Advanced Settings", open=False):
                with gr.Row(mobile_collapse=False, equal_height=True):
                    steps = gr.Slider(value=30, minimum=15, maximum=50, step=1, label="steps", interactive=True)
                    seed = gr.Slider(value=42, minimum=1, maximum=100, step=1, label="seed", interactive=True)
                    guidance_scale = gr.Slider(value=7.5, minimum=1, maximum=15, step=0.1, label='guidance_scale', interactive=True)

                with gr.Row(mobile_collapse=False, equal_height=True):
                    negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt",
                                                 info="what you don't want to see in the image", lines=3)
            with gr.Row():
                btn = gr.Button(value="Generate!", elem_id="run_button")

        with gr.Column():
            image_out = gr.Image(label="Output", elem_id="output-img", height=400)

    btn.click(fn=predict,
              inputs=[prompt, steps, seed, guidance_scale, negative_prompt],
              outputs=[image_out],
              api_name='run')

    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://deci.ai" style="text-decoration: underline;" target="_blank">Deci.ai</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

demo.queue(max_size=50).launch()