Deddy commited on
Commit
ca2e55b
·
verified ·
1 Parent(s): f61d9fe

Upload 15 files

Browse files
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
- title: FLUX Tercepat Di Dunia
3
- emoji: 🏆
4
- colorFrom: gray
5
- colorTo: gray
6
  sdk: gradio
7
  sdk_version: 4.44.0
8
  app_file: app.py
9
- pinned: false
10
- license: apache-2.0
 
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: FLUX Realtime
3
+ emoji:
4
+ colorFrom: yellow
5
+ colorTo: pink
6
  sdk: gradio
7
  sdk_version: 4.44.0
8
  app_file: app.py
9
+ pinned: true
10
+ license: mit
11
+ short_description: High quality Images in Realtime
12
  ---
13
 
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ from gradio_client import Client
4
+ import os
5
+ from themes import IndonesiaTheme # Impor tema custom dari themes.py
6
+
7
+ # Constants
8
+ MAX_SEED = 999999
9
+ MAX_IMAGE_SIZE = 2048
10
+ DEFAULT_WIDTH = 1024
11
+ DEFAULT_HEIGHT = 1024
12
+ DEFAULT_INFERENCE_STEPS = 1
13
+
14
+ # Siapkan URL untuk permintaan API RT FLUX
15
+ # url_api = os.environ['url_api']
16
+
17
+ client = Client("KingNish/Realtime-FLUX")
18
+ # client = Client(url_api)
19
+
20
+ # Inference function using RealtimeFlux API
21
+ def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=1):
22
+ result = client.predict(
23
+ prompt=prompt,
24
+ seed=seed if not randomize_seed else random.randint(0, MAX_SEED),
25
+ width=width,
26
+ height=height,
27
+ randomize_seed=randomize_seed,
28
+ num_inference_steps=num_inference_steps,
29
+ api_name="/RealtimeFlux"
30
+ )
31
+ return result[0], result[1], result[2] # Image, Seed, Latency
32
+
33
+ # Enhance function using Enhance API
34
+ def enhance_image(prompt, seed, width, height):
35
+ result = client.predict(
36
+ param_0=prompt,
37
+ param_1=seed,
38
+ param_2=width,
39
+ param_3=height,
40
+ api_name="/Enhance"
41
+ )
42
+ return result[0], result[1], result[2] # Image, Seed, Latency
43
+
44
+ # CSS untuk styling antarmuka
45
+ css = """
46
+ #col-left, #col-mid, #col-right {
47
+ margin: 0 auto;
48
+ max-width: 400px;
49
+ padding: 10px;
50
+ border-radius: 15px;
51
+ background-color: #f9f9f9;
52
+ box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
53
+ }
54
+
55
+ #col-right {
56
+ margin: 0 auto;
57
+ max-width: 800px;
58
+ padding: 10px;
59
+ border-radius: 15px;
60
+ background-color: #f9f9f9;
61
+ box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
62
+ }
63
+
64
+ #banner {
65
+ width: 100%;
66
+ text-align: center;
67
+ margin-bottom: 20px;
68
+ }
69
+ #run-button {
70
+ background-color: #ff4b5c;
71
+ color: white;
72
+ font-weight: bold;
73
+ padding: 10px;
74
+ border-radius: 10px;
75
+ cursor: pointer;
76
+ box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
77
+ }
78
+ #footer {
79
+ text-align: center;
80
+ margin-top: 20px;
81
+ color: silver;
82
+ }
83
+
84
+ #whitey {
85
+ text-align: center;
86
+ margin-top: 10px;
87
+ color: white;
88
+ }
89
+ """
90
+
91
+ # Membuat antarmuka Gradio dengan tema IndonesiaTheme
92
+ with gr.Blocks(css=css, theme=IndonesiaTheme()) as RealtimeFluxAPP:
93
+ # Tambahkan banner dan header
94
+ gr.HTML("""
95
+ <div style='text-align: center;'>
96
+ <h1>🌟 Realtime FLUX Image Generator 🌟</h1>
97
+ <p>Selamat datang! Buat gambar memukau secara realtime dengan FLUX Pipeline.</p>
98
+ <img src='https://i.ibb.co.com/M2Sd185/banner-rtf.jpg' alt='Banner' style='width: 100%; height: auto;'/>
99
+ </div>
100
+ """)
101
+
102
+ # Layout utama
103
+ with gr.Row():
104
+ with gr.Column(elem_id="col-left"):
105
+ gr.Markdown("### Deskripsi Gambar")
106
+ prompt = gr.Textbox(
107
+ label="Prompt",
108
+ placeholder="Deskripsikan gambar yang ingin Anda buat...",
109
+ lines=3,
110
+ show_label=False,
111
+ container=False,
112
+ )
113
+ generateBtn = gr.Button("🖼️ Buat Gambar", elem_id="run-button")
114
+ enhanceBtn = gr.Button("🚀 Tingkatkan Gambar", elem_id="run-button")
115
+
116
+ # Advanced Options
117
+ with gr.Accordion("Advanced Options"):
118
+ with gr.Row():
119
+ realtime = gr.Checkbox(label="Realtime Toggler", info="Gunakan lebih banyak GPU untuk realtime.")
120
+ latency = gr.Textbox(label="Latency")
121
+ with gr.Row():
122
+ seed = gr.Number(label="Seed", value=42)
123
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
124
+ with gr.Row():
125
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
126
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
127
+ num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
128
+
129
+ # Output di sebelah kanan
130
+ with gr.Column(elem_id="col-right"):
131
+ result = gr.Image(label="Hasil Gambar", show_label=False, interactive=False)
132
+
133
+ # Example Gallery
134
+ gr.Markdown("### 🌟 Inspirasi Gallery")
135
+ gr.Examples(elem_id="whitey",
136
+ examples=[
137
+ "A beautiful sunset over the rice fields in Bali",
138
+ "A traditional Indonesian fisherman sailing in a wooden boat",
139
+ "Mount Bromo erupting at dawn with the sky full of stars",
140
+ "A street food vendor selling nasi goreng in Jakarta",
141
+ "The majestic Komodo dragon walking through the forest",
142
+ "An Indonesian traditional dancer performing in a colorful costume",
143
+ "A futuristic cityscape of Jakarta with skyscrapers and advanced technology",
144
+ ],
145
+ fn=generate_image,
146
+ inputs=[prompt],
147
+ outputs=[result, seed, latency],
148
+ cache_examples="lazy"
149
+ )
150
+
151
+ # Tombol untuk memulai proses pembuatan dan peningkatan gambar
152
+ generateBtn.click(
153
+ fn=generate_image,
154
+ inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
155
+ outputs=[result, seed, latency],
156
+ show_progress=True
157
+ )
158
+
159
+ enhanceBtn.click(
160
+ fn=enhance_image,
161
+ inputs=[prompt, seed, width, height],
162
+ outputs=[result, seed, latency],
163
+ show_progress=True
164
+ )
165
+
166
+ # Tambahkan footer di bagian bawah
167
+ gr.HTML("""
168
+ <footer id="footer">
169
+ <p>Transfer Energi Semesta Digital © 2024 __drat. | 🇮🇩 Untuk Indonesia Jaya!</p>
170
+ </footer>
171
+ """)
172
+
173
+ # Menjalankan aplikasi
174
+ if __name__ == "__main__":
175
+ RealtimeFluxAPP.queue(api_open=False).launch(show_api=False)
app_backup.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import spaces
5
+ import torch
6
+ import time
7
+ from diffusers import DiffusionPipeline
8
+ from custom_pipeline import FLUXPipelineWithIntermediateOutputs
9
+
10
+ # Constants
11
+ MAX_SEED = np.iinfo(np.int32).max
12
+ MAX_IMAGE_SIZE = 2048
13
+ DEFAULT_WIDTH = 1024
14
+ DEFAULT_HEIGHT = 1024
15
+ DEFAULT_INFERENCE_STEPS = 1
16
+
17
+ # Device and model setup
18
+ dtype = torch.float16
19
+ pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
20
+ "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
21
+ ).to("cuda")
22
+ torch.cuda.empty_cache()
23
+
24
+ # Inference function
25
+ @spaces.GPU(duration=25)
26
+ def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
27
+ if randomize_seed:
28
+ seed = random.randint(0, MAX_SEED)
29
+ generator = torch.Generator().manual_seed(int(float(seed)))
30
+
31
+ start_time = time.time()
32
+
33
+ # Only generate the last image in the sequence
34
+ for img in pipe.generate_images(
35
+ prompt=prompt,
36
+ guidance_scale=0, # as Flux schnell is guidance free
37
+ num_inference_steps=num_inference_steps,
38
+ width=width,
39
+ height=height,
40
+ generator=generator
41
+ ):
42
+ latency = f"Latency: {(time.time()-start_time):.2f} seconds"
43
+ yield img, seed, latency
44
+
45
+ # Example prompts
46
+ examples = [
47
+ "a tiny astronaut hatching from an egg on the moon",
48
+ "a cute white cat holding a sign that says hello world",
49
+ "an anime illustration of a wiener schnitzel",
50
+ "Create mage of Modern house in minecraft style",
51
+ "Imagine steve jobs as Star Wars movie character",
52
+ "Lion",
53
+ "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
54
+ ]
55
+
56
+ # --- Gradio UI ---
57
+ with gr.Blocks() as demo:
58
+ with gr.Column(elem_id="app-container"):
59
+ gr.Markdown("# 🎨 Realtime FLUX Image Generator")
60
+ gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
61
+ gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
62
+
63
+ with gr.Row():
64
+ with gr.Column(scale=2.5):
65
+ result = gr.Image(label="Generated Image", show_label=False, interactive=False)
66
+ with gr.Column(scale=1):
67
+ prompt = gr.Text(
68
+ label="Prompt",
69
+ placeholder="Describe the image you want to generate...",
70
+ lines=3,
71
+ show_label=False,
72
+ container=False,
73
+ )
74
+ generateBtn = gr.Button("🖼️ Generate Image")
75
+ enhanceBtn = gr.Button("🚀 Enhance Image")
76
+
77
+ with gr.Column("Advanced Options"):
78
+ with gr.Row():
79
+ realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
80
+ latency = gr.Text(label="Latency")
81
+ with gr.Row():
82
+ seed = gr.Number(label="Seed", value=42)
83
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
84
+ with gr.Row():
85
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
86
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
87
+ num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
88
+
89
+ with gr.Row():
90
+ gr.Markdown("### 🌟 Inspiration Gallery")
91
+ with gr.Row():
92
+ gr.Examples(
93
+ examples=examples,
94
+ fn=generate_image,
95
+ inputs=[prompt],
96
+ outputs=[result, seed, latency],
97
+ cache_examples="lazy"
98
+ )
99
+
100
+ def enhance_image(*args):
101
+ gr.Info("Enhancing Image") # currently just runs optimized pipeline for 2 steps. Further implementations later.
102
+ return next(generate_image(*args))
103
+
104
+ enhanceBtn.click(
105
+ fn=enhance_image,
106
+ inputs=[prompt, seed, width, height],
107
+ outputs=[result, seed, latency],
108
+ show_progress="hidden",
109
+ api_name="Enhance",
110
+ queue=False,
111
+ concurrency_limit=None
112
+ )
113
+
114
+ generateBtn.click(
115
+ fn=generate_image,
116
+ inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
117
+ outputs=[result, seed, latency],
118
+ show_progress="full",
119
+ api_name="RealtimeFlux",
120
+ queue=False,
121
+ concurrency_limit=None
122
+ )
123
+
124
+ def update_ui(realtime_enabled):
125
+ return {
126
+ prompt: gr.update(interactive=True),
127
+ generateBtn: gr.update(visible=not realtime_enabled)
128
+ }
129
+
130
+ realtime.change(
131
+ fn=update_ui,
132
+ inputs=[realtime],
133
+ outputs=[prompt, generateBtn],
134
+ queue=False,
135
+ concurrency_limit=None
136
+ )
137
+
138
+ def realtime_generation(*args):
139
+ if args[0]: # If realtime is enabled
140
+ return next(generate_image(*args[1:]))
141
+
142
+ prompt.submit(
143
+ fn=generate_image,
144
+ inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
145
+ outputs=[result, seed, latency],
146
+ show_progress="full",
147
+ api_name=False,
148
+ queue=False,
149
+ concurrency_limit=None
150
+ )
151
+
152
+ for component in [prompt, width, height, num_inference_steps]:
153
+ component.input(
154
+ fn=realtime_generation,
155
+ inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
156
+ outputs=[result, seed, latency],
157
+ show_progress="hidden",
158
+ api_name=False,
159
+ trigger_mode="always_last",
160
+ queue=False,
161
+ concurrency_limit=None
162
+ )
163
+
164
+ # Launch the app
165
+ demo.launch()
custom_pipeline.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+ from PIL import Image
6
+
7
+ # Constants for shift calculation
8
+ BASE_SEQ_LEN = 256
9
+ MAX_SEQ_LEN = 4096
10
+ BASE_SHIFT = 0.5
11
+ MAX_SHIFT = 1.2
12
+
13
+ # Helper functions
14
+ def calculate_timestep_shift(image_seq_len: int) -> float:
15
+ """Calculates the timestep shift (mu) based on the image sequence length."""
16
+ m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
17
+ b = BASE_SHIFT - m * BASE_SEQ_LEN
18
+ mu = image_seq_len * m + b
19
+ return mu
20
+
21
+ def prepare_timesteps(
22
+ scheduler: FlowMatchEulerDiscreteScheduler,
23
+ num_inference_steps: Optional[int] = None,
24
+ device: Optional[Union[str, torch.device]] = None,
25
+ timesteps: Optional[List[int]] = None,
26
+ sigmas: Optional[List[float]] = None,
27
+ mu: Optional[float] = None,
28
+ ) -> (torch.Tensor, int):
29
+ """Prepares the timesteps for the diffusion process."""
30
+ if timesteps is not None and sigmas is not None:
31
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
32
+
33
+ if timesteps is not None:
34
+ scheduler.set_timesteps(timesteps=timesteps, device=device)
35
+ elif sigmas is not None:
36
+ scheduler.set_timesteps(sigmas=sigmas, device=device)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)
39
+
40
+ timesteps = scheduler.timesteps
41
+ num_inference_steps = len(timesteps)
42
+ return timesteps, num_inference_steps
43
+
44
+ # FLUX pipeline function
45
+ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
46
+ """
47
+ Extends the FluxPipeline to yield intermediate images during the denoising process
48
+ with progressively increasing resolution for faster generation.
49
+ """
50
+ @torch.inference_mode()
51
+ def generate_images(
52
+ self,
53
+ prompt: Union[str, List[str]] = None,
54
+ prompt_2: Optional[Union[str, List[str]]] = None,
55
+ height: Optional[int] = None,
56
+ width: Optional[int] = None,
57
+ num_inference_steps: int = 4,
58
+ timesteps: List[int] = None,
59
+ guidance_scale: float = 3.5,
60
+ num_images_per_prompt: Optional[int] = 1,
61
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
62
+ latents: Optional[torch.FloatTensor] = None,
63
+ prompt_embeds: Optional[torch.FloatTensor] = None,
64
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
65
+ output_type: Optional[str] = "pil",
66
+ return_dict: bool = True,
67
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
68
+ max_sequence_length: int = 300,
69
+ ):
70
+ """Generates images and yields intermediate results during the denoising process."""
71
+ height = height or self.default_sample_size * self.vae_scale_factor
72
+ width = width or self.default_sample_size * self.vae_scale_factor
73
+
74
+ # 1. Check inputs
75
+ self.check_inputs(
76
+ prompt,
77
+ prompt_2,
78
+ height,
79
+ width,
80
+ prompt_embeds=prompt_embeds,
81
+ pooled_prompt_embeds=pooled_prompt_embeds,
82
+ max_sequence_length=max_sequence_length,
83
+ )
84
+
85
+ self._guidance_scale = guidance_scale
86
+ self._joint_attention_kwargs = joint_attention_kwargs
87
+ self._interrupt = False
88
+
89
+ # 2. Define call parameters
90
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
91
+ device = self._execution_device
92
+
93
+ # 3. Encode prompt
94
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
95
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
96
+ prompt=prompt,
97
+ prompt_2=prompt_2,
98
+ prompt_embeds=prompt_embeds,
99
+ pooled_prompt_embeds=pooled_prompt_embeds,
100
+ device=device,
101
+ num_images_per_prompt=num_images_per_prompt,
102
+ max_sequence_length=max_sequence_length,
103
+ lora_scale=lora_scale,
104
+ )
105
+ # 4. Prepare latent variables
106
+ num_channels_latents = self.transformer.config.in_channels // 4
107
+ latents, latent_image_ids = self.prepare_latents(
108
+ batch_size * num_images_per_prompt,
109
+ num_channels_latents,
110
+ height,
111
+ width,
112
+ prompt_embeds.dtype,
113
+ device,
114
+ generator,
115
+ latents,
116
+ )
117
+ # 5. Prepare timesteps
118
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
119
+ image_seq_len = latents.shape[1]
120
+ mu = calculate_timestep_shift(image_seq_len)
121
+ timesteps, num_inference_steps = prepare_timesteps(
122
+ self.scheduler,
123
+ num_inference_steps,
124
+ device,
125
+ timesteps,
126
+ sigmas,
127
+ mu=mu,
128
+ )
129
+ self._num_timesteps = len(timesteps)
130
+
131
+ # Handle guidance
132
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
133
+
134
+ # 6. Denoising loop
135
+ for i, t in enumerate(timesteps):
136
+ if self.interrupt:
137
+ continue
138
+
139
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
140
+
141
+ noise_pred = self.transformer(
142
+ hidden_states=latents,
143
+ timestep=timestep / 1000,
144
+ guidance=guidance,
145
+ pooled_projections=pooled_prompt_embeds,
146
+ encoder_hidden_states=prompt_embeds,
147
+ txt_ids=text_ids,
148
+ img_ids=latent_image_ids,
149
+ joint_attention_kwargs=self.joint_attention_kwargs,
150
+ return_dict=False,
151
+ )[0]
152
+
153
+ # Yield intermediate result
154
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
155
+ torch.cuda.empty_cache()
156
+
157
+ # Final image
158
+ yield self._decode_latents_to_image(latents, height, width, output_type)
159
+ self.maybe_free_model_hooks()
160
+ torch.cuda.empty_cache()
161
+
162
+ def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
163
+ """Decodes the given latents into an image."""
164
+ vae = vae or self.vae
165
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
166
+ latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
167
+ image = vae.decode(latents, return_dict=False)[0]
168
+ return self.image_processor.postprocess(image, output_type=output_type)[0]
gradio_cached_examples/.DS_Store ADDED
Binary file (6.15 kB). View file
 
gradio_cached_examples/25/Hasil Gambar/357e0c8d8a0e75b63595/image.webp ADDED
gradio_cached_examples/25/Hasil Gambar/727c385c02cbde1f1576/image.webp ADDED
gradio_cached_examples/25/Hasil Gambar/827754ef7725b469cc3b/image.webp ADDED
gradio_cached_examples/25/indices.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 0
2
+ 4
3
+ 5
gradio_cached_examples/25/log.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Hasil Gambar,Seed,Latency,flag,username,timestamp
2
+ "{""path"": ""gradio_cached_examples/25/Hasil Gambar/727c385c02cbde1f1576/image.webp"", ""url"": ""/file=/private/var/folders/vd/j2y_f_m51g549p6b1r04gm840000gn/T/gradio/77f2ec64bb9e013ff44412eb6113b60d159b39bc6b4896c611878433c630bceb/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",42,Latency: 2.70 seconds,,,2024-09-17 15:46:20.843746
3
+ "{""path"": ""gradio_cached_examples/25/Hasil Gambar/357e0c8d8a0e75b63595/image.webp"", ""url"": ""/file=/private/var/folders/vd/j2y_f_m51g549p6b1r04gm840000gn/T/gradio/75bf61373bd5f8769ef00ed36a36a0ad9ac4b5acdd5e87525a2bcad08cc801e5/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",42,Latency: 1.54 seconds,,,2024-09-17 15:53:24.921673
4
+ "{""path"": ""gradio_cached_examples/25/Hasil Gambar/827754ef7725b469cc3b/image.webp"", ""url"": ""/file=/private/var/folders/vd/j2y_f_m51g549p6b1r04gm840000gn/T/gradio/dc416db9554a73bb302e4594854753abd87a742ddef9604d877f85dbeff179a5/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",42,Latency: 1.66 seconds,,,2024-09-17 15:56:55.732014
gradio_cached_examples/29/Generated Image/c9de53a0541e2186d948/image.webp ADDED
gradio_cached_examples/29/indices.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ 5
gradio_cached_examples/29/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Generated Image,Seed,Latency,flag,username,timestamp
2
+ "{""path"": ""gradio_cached_examples/29/Generated Image/c9de53a0541e2186d948/image.webp"", ""url"": ""/file=/private/var/folders/vd/j2y_f_m51g549p6b1r04gm840000gn/T/gradio/f241273bd433bc7094613cce640fc438824921e40151f296ff33088e4fa26c7a/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",42,Latency: 2.30 seconds,,,2024-09-17 15:39:23.570453
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ git+https://github.com/huggingface/diffusers.git
3
+ torch
4
+ gradio
5
+ transformers
6
+ xformers
7
+ sentencepiece
themes.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Iterable
3
+ from gradio.themes.base import Base
4
+ from gradio.themes.utils import colors, fonts, sizes
5
+
6
+ class IndonesiaTheme(Base):
7
+ def __init__(
8
+ self,
9
+ *,
10
+ primary_hue: colors.Color | str = colors.red,
11
+ secondary_hue: colors.Color | str = colors.gray,
12
+ neutral_hue: colors.Color | str = colors.gray,
13
+ spacing_size: sizes.Size | str = sizes.spacing_md,
14
+ radius_size: sizes.Size | str = sizes.radius_md,
15
+ text_size: sizes.Size | str = sizes.text_lg,
16
+ font: fonts.Font
17
+ | str
18
+ | Iterable[fonts.Font | str] = (
19
+ fonts.GoogleFont("Quicksand"),
20
+ "ui-sans-serif",
21
+ "sans-serif",
22
+ ),
23
+ font_mono: fonts.Font
24
+ | str
25
+ | Iterable[fonts.Font | str] = (
26
+ fonts.GoogleFont("IBM Plex Mono"),
27
+ "ui-monospace",
28
+ "monospace",
29
+ ),
30
+ ):
31
+ super().__init__(
32
+ primary_hue=primary_hue,
33
+ secondary_hue=secondary_hue,
34
+ neutral_hue=neutral_hue,
35
+ spacing_size=spacing_size,
36
+ radius_size=radius_size,
37
+ text_size=text_size,
38
+ font=font,
39
+ font_mono=font_mono,
40
+ )
41
+ super().set(
42
+ body_background_fill="linear-gradient(to bottom, #e0e0e0, #7d7d7d)", # Gradasi abu-abu muda ke abu-abu tua
43
+ body_background_fill_dark="linear-gradient(to bottom, #7d7d7d, #4a4a4a)", # Gradasi abu-abu tua ke lebih gelap untuk dark mode
44
+ button_primary_background_fill="linear-gradient(90deg, #d84a4a, #b33030)", # Merah ke merah tua
45
+ button_primary_background_fill_hover="linear-gradient(90deg, #e85b5b, #cc4b4b)", # Merah lebih terang untuk hover
46
+ button_primary_text_color="white",
47
+ button_primary_background_fill_dark="linear-gradient(90deg, #b33030, #8f1f1f)", # Merah tua untuk dark mode
48
+ slider_color="*secondary_300",
49
+ slider_color_dark="*secondary_600",
50
+ block_title_text_weight="600",
51
+ block_border_width="3px",
52
+ block_shadow="*shadow_drop_lg",
53
+ button_shadow="*shadow_drop_lg",
54
+ button_large_padding="32px",
55
+ )