Spaces:
Running
Running
Delete app_backup.py
Browse files- app_backup.py +0 -165
app_backup.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
import spaces
|
5 |
-
import torch
|
6 |
-
import time
|
7 |
-
from diffusers import DiffusionPipeline
|
8 |
-
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
9 |
-
|
10 |
-
# Constants
|
11 |
-
MAX_SEED = np.iinfo(np.int32).max
|
12 |
-
MAX_IMAGE_SIZE = 2048
|
13 |
-
DEFAULT_WIDTH = 1024
|
14 |
-
DEFAULT_HEIGHT = 1024
|
15 |
-
DEFAULT_INFERENCE_STEPS = 1
|
16 |
-
|
17 |
-
# Device and model setup
|
18 |
-
dtype = torch.float16
|
19 |
-
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
20 |
-
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
21 |
-
).to("cuda")
|
22 |
-
torch.cuda.empty_cache()
|
23 |
-
|
24 |
-
# Inference function
|
25 |
-
@spaces.GPU(duration=25)
|
26 |
-
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
27 |
-
if randomize_seed:
|
28 |
-
seed = random.randint(0, MAX_SEED)
|
29 |
-
generator = torch.Generator().manual_seed(int(float(seed)))
|
30 |
-
|
31 |
-
start_time = time.time()
|
32 |
-
|
33 |
-
# Only generate the last image in the sequence
|
34 |
-
for img in pipe.generate_images(
|
35 |
-
prompt=prompt,
|
36 |
-
guidance_scale=0, # as Flux schnell is guidance free
|
37 |
-
num_inference_steps=num_inference_steps,
|
38 |
-
width=width,
|
39 |
-
height=height,
|
40 |
-
generator=generator
|
41 |
-
):
|
42 |
-
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
43 |
-
yield img, seed, latency
|
44 |
-
|
45 |
-
# Example prompts
|
46 |
-
examples = [
|
47 |
-
"a tiny astronaut hatching from an egg on the moon",
|
48 |
-
"a cute white cat holding a sign that says hello world",
|
49 |
-
"an anime illustration of a wiener schnitzel",
|
50 |
-
"Create mage of Modern house in minecraft style",
|
51 |
-
"Imagine steve jobs as Star Wars movie character",
|
52 |
-
"Lion",
|
53 |
-
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
|
54 |
-
]
|
55 |
-
|
56 |
-
# --- Gradio UI ---
|
57 |
-
with gr.Blocks() as demo:
|
58 |
-
with gr.Column(elem_id="app-container"):
|
59 |
-
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
|
60 |
-
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
|
61 |
-
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
|
62 |
-
|
63 |
-
with gr.Row():
|
64 |
-
with gr.Column(scale=2.5):
|
65 |
-
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
|
66 |
-
with gr.Column(scale=1):
|
67 |
-
prompt = gr.Text(
|
68 |
-
label="Prompt",
|
69 |
-
placeholder="Describe the image you want to generate...",
|
70 |
-
lines=3,
|
71 |
-
show_label=False,
|
72 |
-
container=False,
|
73 |
-
)
|
74 |
-
generateBtn = gr.Button("🖼️ Generate Image")
|
75 |
-
enhanceBtn = gr.Button("🚀 Enhance Image")
|
76 |
-
|
77 |
-
with gr.Column("Advanced Options"):
|
78 |
-
with gr.Row():
|
79 |
-
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
|
80 |
-
latency = gr.Text(label="Latency")
|
81 |
-
with gr.Row():
|
82 |
-
seed = gr.Number(label="Seed", value=42)
|
83 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
|
84 |
-
with gr.Row():
|
85 |
-
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
|
86 |
-
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
|
87 |
-
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
|
88 |
-
|
89 |
-
with gr.Row():
|
90 |
-
gr.Markdown("### 🌟 Inspiration Gallery")
|
91 |
-
with gr.Row():
|
92 |
-
gr.Examples(
|
93 |
-
examples=examples,
|
94 |
-
fn=generate_image,
|
95 |
-
inputs=[prompt],
|
96 |
-
outputs=[result, seed, latency],
|
97 |
-
cache_examples="lazy"
|
98 |
-
)
|
99 |
-
|
100 |
-
def enhance_image(*args):
|
101 |
-
gr.Info("Enhancing Image") # currently just runs optimized pipeline for 2 steps. Further implementations later.
|
102 |
-
return next(generate_image(*args))
|
103 |
-
|
104 |
-
enhanceBtn.click(
|
105 |
-
fn=enhance_image,
|
106 |
-
inputs=[prompt, seed, width, height],
|
107 |
-
outputs=[result, seed, latency],
|
108 |
-
show_progress="hidden",
|
109 |
-
api_name="Enhance",
|
110 |
-
queue=False,
|
111 |
-
concurrency_limit=None
|
112 |
-
)
|
113 |
-
|
114 |
-
generateBtn.click(
|
115 |
-
fn=generate_image,
|
116 |
-
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
117 |
-
outputs=[result, seed, latency],
|
118 |
-
show_progress="full",
|
119 |
-
api_name="RealtimeFlux",
|
120 |
-
queue=False,
|
121 |
-
concurrency_limit=None
|
122 |
-
)
|
123 |
-
|
124 |
-
def update_ui(realtime_enabled):
|
125 |
-
return {
|
126 |
-
prompt: gr.update(interactive=True),
|
127 |
-
generateBtn: gr.update(visible=not realtime_enabled)
|
128 |
-
}
|
129 |
-
|
130 |
-
realtime.change(
|
131 |
-
fn=update_ui,
|
132 |
-
inputs=[realtime],
|
133 |
-
outputs=[prompt, generateBtn],
|
134 |
-
queue=False,
|
135 |
-
concurrency_limit=None
|
136 |
-
)
|
137 |
-
|
138 |
-
def realtime_generation(*args):
|
139 |
-
if args[0]: # If realtime is enabled
|
140 |
-
return next(generate_image(*args[1:]))
|
141 |
-
|
142 |
-
prompt.submit(
|
143 |
-
fn=generate_image,
|
144 |
-
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
145 |
-
outputs=[result, seed, latency],
|
146 |
-
show_progress="full",
|
147 |
-
api_name=False,
|
148 |
-
queue=False,
|
149 |
-
concurrency_limit=None
|
150 |
-
)
|
151 |
-
|
152 |
-
for component in [prompt, width, height, num_inference_steps]:
|
153 |
-
component.input(
|
154 |
-
fn=realtime_generation,
|
155 |
-
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
|
156 |
-
outputs=[result, seed, latency],
|
157 |
-
show_progress="hidden",
|
158 |
-
api_name=False,
|
159 |
-
trigger_mode="always_last",
|
160 |
-
queue=False,
|
161 |
-
concurrency_limit=None
|
162 |
-
)
|
163 |
-
|
164 |
-
# Launch the app
|
165 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|