Spaces:
Running
Running
File size: 4,394 Bytes
0cfb4a5 d4fba6d 0dec378 de6051a 0dec378 0a67e9a a484b84 d4fba6d 2fc432b 1a52ee5 0dec378 219d097 471c590 0dec378 79f1585 e3be785 20de417 e3be785 2fc432b 0198afd 1a52ee5 2f35681 2fc432b e3be785 2fc432b 471c590 2fc432b e3be785 79f1585 e3be785 165b2f6 3b4ee8c 5e03798 2f35681 5e03798 0198afd 5e03798 2f35681 5e03798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
MAX_SEED = np.iinfo(np.int32).max
CSS = "footer { visibility: hidden; }"
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
def enable_lora(lora_add, basemodel):
return basemodel if not lora_add else lora_add
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = str(translator.translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
model = lora_model
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
image_path = "temp_image.png"
image.save(image_path)
if process_upscale:
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
else:
upscale_image = image_path
return [image_path, upscale_image]
def get_upscale_finegrain(prompt, img_path, upscale_factor):
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
css = """
#col-container{
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("Flux Upscaled +LORA")
with gr.Row():
with gr.Column(scale=1.5):
output_res = ImageSlider(label="Flux / Upscaled")
with gr.Column(scale=0.8):
prompt = gr.Textbox(label="Prompt")
basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"])
process_lora = gr.Checkbox(label="Process LORA", value=True)
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2, scale=2)
process_upscale = gr.Checkbox(label="Process Upscale", value=False)
with gr.Accordion(label="Advanced Options", open=False):
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=512)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=512)
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
submit_btn = gr.Button("Submit", scale=1)
submit_btn.click(
fn=lambda: None,
inputs=None,
outputs=[output_res],
queue=False
).then(
fn=gen,
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
outputs=[output_res]
)
demo.launch() |