salomonsky's picture
Update app.py
1a52ee5 verified
raw
history blame
4.34 kB
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient, login
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-schnell"
MAX_SEED = np.iinfo(np.int32).max
CSS = "footer {visibility: hidden;}"
JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}"
def enable_lora(lora_add):
if not lora_add:
return basemodel
else:
return lora_add
def get_upscale_finegrain(prompt, img_path, upscale_factor):
client = Client("finegrain/finegrain-image-enhancer")
result = client.predict(
input_image=handle_file(img_path),
prompt=prompt,
negative_prompt="",
seed=42,
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
tile_width=112,
tile_height=144,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process"
)
return result[1]
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = str(translator.translate(prompt, 'English')) + "," + lora_word
async with AsyncInferenceClient() as client:
try:
image = await client.text_to_image(
prompt=text,
height=height,
width=width,
guidance_scale=scales,
num_inference_steps=steps,
model=model,
)
except Exception as e:
raise gr.Error(f"Error in {e}")
return image, seed
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor):
model = enable_lora(lora_add)
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
if upscale_factor != 0:
upscaled_image = get_upscale_finegrain(prompt, image, upscale_factor)
combined_image = Image.new('RGB', (image.width + upscaled_image.width, image.height))
combined_image.paste(image, (0, 0))
combined_image.paste(upscaled_image, (image.width, 0))
return combined_image, seed
else:
return image, seed
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
img = gr.Image(type="filepath", label='Comparison Image', height=600)
with gr.Row():
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
sendBtn = gr.Button(scale=1, variant='primary')
with gr.Accordion("Advanced Options", open=True):
with gr.Column(scale=1):
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024)
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2)
gr.on(
triggers=[prompt.submit, sendBtn.click],
fn=gen,
inputs=[
prompt,
lora_add,
lora_word,
width,
height,
scales,
steps,
seed,
upscale_factor
],
outputs=[img, seed]
)