Spaces:
Running
Running
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
from huggingface_hub import AsyncInferenceClient, login | |
from translatepy import Translator | |
import requests | |
import re | |
import asyncio | |
from PIL import Image | |
from gradio_client import Client, handle_file | |
translator = Translator() | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
basemodel = "black-forest-labs/FLUX.1-schnell" | |
MAX_SEED = np.iinfo(np.int32).max | |
CSS = "footer {visibility: hidden;}" | |
JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}" | |
def enable_lora(lora_add): | |
if not lora_add: | |
return basemodel | |
else: | |
return lora_add | |
def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
client = Client("finegrain/finegrain-image-enhancer") | |
result = client.predict( | |
input_image=handle_file(img_path), | |
prompt=prompt, | |
negative_prompt="", | |
seed=42, | |
upscale_factor=upscale_factor, | |
controlnet_scale=0.6, | |
controlnet_decay=1, | |
condition_scale=6, | |
tile_width=112, | |
tile_height=144, | |
denoise_strength=0.35, | |
num_inference_steps=18, | |
solver="DDIM", | |
api_name="/process" | |
) | |
return result[1] | |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
text = str(translator.translate(prompt, 'English')) + "," + lora_word | |
async with AsyncInferenceClient() as client: | |
try: | |
image = await client.text_to_image( | |
prompt=text, | |
height=height, | |
width=width, | |
guidance_scale=scales, | |
num_inference_steps=steps, | |
model=model, | |
) | |
except Exception as e: | |
raise gr.Error(f"Error in {e}") | |
return image, seed | |
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor): | |
model = enable_lora(lora_add) | |
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed) | |
if upscale_factor != 0: | |
upscaled_image = get_upscale_finegrain(prompt, image, upscale_factor) | |
combined_image = Image.new('RGB', (image.width + upscaled_image.width, image.height)) | |
combined_image.paste(image, (0, 0)) | |
combined_image.paste(upscaled_image, (image.width, 0)) | |
return combined_image, seed | |
else: | |
return image, seed | |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<h1><center>Flux Lab Light</center></h1>") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
img = gr.Image(type="filepath", label='Comparison Image', height=600) | |
with gr.Row(): | |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6) | |
sendBtn = gr.Button(scale=1, variant='primary') | |
with gr.Accordion("Advanced Options", open=True): | |
with gr.Column(scale=1): | |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768) | |
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024) | |
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24) | |
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1) | |
lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model") | |
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="") | |
upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2) | |
gr.on( | |
triggers=[prompt.submit, sendBtn.click], | |
fn=gen, | |
inputs=[ | |
prompt, | |
lora_add, | |
lora_word, | |
width, | |
height, | |
scales, | |
steps, | |
seed, | |
upscale_factor | |
], | |
outputs=[img, seed] | |
) |