Deddy commited on
Commit
7440665
·
verified ·
1 Parent(s): 6fbe4fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +142 -45
app.py CHANGED
@@ -4,88 +4,185 @@ import numpy as np
4
  import random
5
  from huggingface_hub import AsyncInferenceClient
6
  from translatepy import Translator
7
- import requests
8
- import re
9
- import asyncio
10
- from PIL import Image
11
  from gradio_client import Client, handle_file
 
12
  from huggingface_hub import login
13
- from gradio_imageslider import ImageSlider
14
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
- HF_TOKEN = os.environ.get("HF_TOKEN")
17
- HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
18
 
 
19
  def enable_lora(lora_add, basemodel):
 
20
  return basemodel if not lora_add else lora_add
21
 
 
22
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
23
  try:
24
  if seed == -1:
25
  seed = random.randint(0, MAX_SEED)
26
  seed = int(seed)
 
 
27
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
 
 
28
  client = AsyncInferenceClient()
29
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
30
  return image, seed
31
  except Exception as e:
32
- print(f"Error generando imagen: {e}")
33
  return None, None
34
 
 
35
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
36
  try:
 
37
  client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
38
- result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
39
- return result[1]
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  except Exception as e:
41
- print(f"Error escalando imagen: {e}")
42
  return None
43
-
 
44
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
 
 
45
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
 
 
46
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
47
- if image is None:
48
- return [None, None]
49
 
 
 
 
 
50
  image_path = "temp_image.jpg"
 
51
  image.save(image_path, format="JPEG")
52
-
 
53
  if process_upscale:
 
54
  upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
55
- if upscale_image_path is not None:
56
- upscale_image = Image.open(upscale_image_path)
57
- upscale_image.save("upscale_image.jpg", format="JPEG")
58
- return [image_path, "upscale_image.jpg"]
59
  else:
60
- print("Error: La ruta de la imagen escalada es None")
61
- return [image_path, image_path]
62
- else:
63
- return [image_path, image_path]
64
 
 
65
  css = """
66
- #col-container{ margin: 0 auto; max-width: 1024px;}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  """
68
 
69
- with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
 
 
 
 
70
  with gr.Column(elem_id="col-container"):
 
71
  with gr.Row():
72
- with gr.Column(scale=3):
73
- output_res = ImageSlider(label="Flux / Upscaled")
74
- with gr.Column(scale=2):
75
- prompt = gr.Textbox(label="Descripción de imágen")
76
- basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
77
- lora_model_choice = gr.Dropdown(label="LORA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
78
- process_lora = gr.Checkbox(label="Procesar LORA")
79
- process_upscale = gr.Checkbox(label="Procesar Escalador")
80
- upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
81
-
82
- with gr.Accordion(label="Opciones Avanzadas", open=False):
83
- width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
84
- height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
85
- scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=8)
86
- steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=8)
87
- seed = gr.Number(label="Semilla", value=-1)
88
-
89
- btn = gr.Button("Generar")
90
- btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
91
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  import random
5
  from huggingface_hub import AsyncInferenceClient
6
  from translatepy import Translator
 
 
 
 
7
  from gradio_client import Client, handle_file
8
+ from PIL import Image
9
  from huggingface_hub import login
10
+ from themes import IndonesiaTheme # Import custom IndonesiaTheme
11
 
12
  MAX_SEED = np.iinfo(np.int32).max
13
+ HF_TOKEN = "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"
14
+ HF_TOKEN_UPSCALER = "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"
15
 
16
+ # Function to enable LoRA if selected
17
  def enable_lora(lora_add, basemodel):
18
+ print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}")
19
  return basemodel if not lora_add else lora_add
20
 
21
+ # Function to generate image
22
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
23
  try:
24
  if seed == -1:
25
  seed = random.randint(0, MAX_SEED)
26
  seed = int(seed)
27
+
28
+ print(f"[-] Menerjemahkan prompt: {prompt}")
29
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
30
+
31
+ print(f"[-] Generating image with prompt: {text}, model: {model}")
32
  client = AsyncInferenceClient()
33
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
34
  return image, seed
35
  except Exception as e:
36
+ print(f"[-] Error generating image: {e}")
37
  return None, None
38
 
39
+ # Function to upscale image
40
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
41
  try:
42
+ print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}")
43
  client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
44
+ result = client.predict(
45
+ input_image=handle_file(img_path),
46
+ prompt=prompt,
47
+ negative_prompt="worst quality, low quality, normal quality",
48
+ upscale_factor=upscale_factor,
49
+ controlnet_scale=0.6,
50
+ controlnet_decay=1,
51
+ condition_scale=6,
52
+ denoise_strength=0.35,
53
+ num_inference_steps=18,
54
+ solver="DDIM",
55
+ api_name="/process"
56
+ )
57
+ print(f"[-] Proses upscaling berhasil.")
58
+ return result[1] # Return upscale image path
59
  except Exception as e:
60
+ print(f"[-] Error scaling image: {e}")
61
  return None
62
+
63
+ # Main function to generate images and optionally upscale
64
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
65
+ print(f"[-] Memulai generasi gambar dengan prompt: {prompt}")
66
+
67
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
68
+ print(f"[-] Menggunakan model: {model}")
69
+
70
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
 
 
71
 
72
+ if image is None:
73
+ print("[-] Image generation failed.")
74
+ return []
75
+
76
  image_path = "temp_image.jpg"
77
+ print(f"[-] Menyimpan gambar sementara di: {image_path}")
78
  image.save(image_path, format="JPEG")
79
+
80
+ upscale_image_path = None
81
  if process_upscale:
82
+ print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}")
83
  upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
84
+ if upscale_image_path is not None and os.path.exists(upscale_image_path):
85
+ print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
86
+ return [image_path, upscale_image_path] # Return both images
 
87
  else:
88
+ print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.")
89
+
90
+ return [image_path]
 
91
 
92
+ # CSS for styling the interface
93
  css = """
94
+ #col-left, #col-mid, #col-right {
95
+ margin: 0 auto;
96
+ max-width: 400px;
97
+ padding: 10px;
98
+ border-radius: 15px;
99
+ background-color: #f9f9f9;
100
+ box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
101
+ }
102
+ #banner {
103
+ width: 100%;
104
+ text-align: center;
105
+ margin-bottom: 20px;
106
+ }
107
+ #run-button {
108
+ background-color: #ff4b5c;
109
+ color: white;
110
+ font-weight: bold;
111
+ padding: 10px;
112
+ border-radius: 10px;
113
+ cursor: pointer;
114
+ box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
115
+ }
116
+ #footer {
117
+ text-align: center;
118
+ margin-top: 20px;
119
+ color: silver;
120
+ }
121
  """
122
 
123
+ # Creating Gradio interface
124
+ with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
125
+ # Displaying the application title
126
+ gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')
127
+
128
  with gr.Column(elem_id="col-container"):
129
+ # Output section (replacing ImageSlider with gr.Gallery)
130
  with gr.Row():
131
+ output_res = gr.Gallery(label="⚡ Flux / Upscaled Image ⚡", elem_id="output-res", columns=2, height="auto")
132
+
133
+ # User input section split into two columns
134
+ with gr.Row():
135
+ # Column 1: Input prompt, LoRA, and base model
136
+ with gr.Column(scale=1, elem_id="col-left"):
137
+ prompt = gr.Textbox(
138
+ label="📜 Deskripsi Gambar",
139
+ placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.",
140
+ elem_id="textbox-prompt"
141
+ )
142
+
143
+ basemodel_choice = gr.Dropdown(
144
+ label="🖼️ Pilih Model",
145
+ choices=[
146
+ "black-forest-labs/FLUX.1-schnell",
147
+ "black-forest-labs/FLUX.1-DEV",
148
+ "enhanceaiteam/Flux-uncensored",
149
+ "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
150
+ "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
151
+ "city96/FLUX.1-dev-gguf"
152
+ ],
153
+ value="black-forest-labs/FLUX.1-schnell"
154
+ )
155
+
156
+ lora_model_choice = gr.Dropdown(
157
+ label="🎨 Pilih LoRA",
158
+ choices=[
159
+ "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
160
+ "XLabs-AI/flux-RealismLora",
161
+ "enhanceaiteam/Flux-uncensored"
162
+ ],
163
+ value="XLabs-AI/flux-RealismLora"
164
+ )
165
+
166
+ process_lora = gr.Checkbox(label="🎨 Aktifkan LoRA")
167
+ process_upscale = gr.Checkbox(label="🔍 Aktifkan Peningkatan Resolusi")
168
+ upscale_factor = gr.Radio(label="🔍 Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2)
169
+
170
+ # Column 2: Advanced options (always open)
171
+ with gr.Column(scale=1, elem_id="col-right"):
172
+ with gr.Accordion(label="⚙️ Opsi Lanjutan", open=True):
173
+ width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280)
174
+ height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768)
175
+ scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8)
176
+ steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8)
177
+ seed = gr.Number(label="Seed", value=-1)
178
+
179
+ # Button to generate image
180
+ btn = gr.Button("🚀 Buat Gambar", elem_id="generate-btn")
181
+
182
+ # Running the `gen` function when "Generate" button is pressed
183
+ btn.click(fn=gen, inputs=[
184
+ prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
185
+ ], outputs=output_res)
186
+
187
+ # Launching the Gradio app
188
+ WallpaperFluxMaker.queue(api_open=False).launch(show_api=False)