salomonsky commited on
Commit
dd9a5a8
1 Parent(s): e019f29

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -14
app.py CHANGED
@@ -32,8 +32,16 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
32
  print(f"Error generating image: {e}")
33
  return None, None
34
 
 
 
 
 
 
 
 
 
 
35
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
36
- """Genera una imagen y la ajusta"""
37
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
38
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
39
  if image is None:
@@ -44,20 +52,11 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
44
 
45
  if process_upscale:
46
  upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
 
 
 
47
  else:
48
- upscale_image = image_path
49
-
50
- return [image_path, upscale_image]
51
-
52
- def get_upscale_finegrain(prompt, img_path, upscale_factor):
53
- """Ajusta la imagen"""
54
- try:
55
- client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
56
- result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
57
- return result[1]
58
- except Exception as e:
59
- print(f"Error upscale image: {e}")
60
- return None
61
 
62
  css = """
63
  #col-container{ margin: 0 auto; max-width: 1024px;}
 
32
  print(f"Error generating image: {e}")
33
  return None, None
34
 
35
+ def get_upscale_finegrain(prompt, img_path, upscale_factor):
36
+ try:
37
+ client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
38
+ result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
39
+ return result[1]
40
+ except Exception as e:
41
+ print(f"Error upscale image: {e}")
42
+ return None
43
+
44
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
 
45
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
46
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
47
  if image is None:
 
52
 
53
  if process_upscale:
54
  upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
55
+ upscale_image_path = "upscale_image.jpg"
56
+ upscale_image.save(upscale_image_path, format="JPEG")
57
+ return [image_path, upscale_image_path]
58
  else:
59
+ return [image_path, image_path]
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  css = """
62
  #col-container{ margin: 0 auto; max-width: 1024px;}