Spaces:
Running
Running
import os | |
import logging | |
from collections import OrderedDict | |
import math | |
import warnings | |
from typing import Callable, Optional, Sequence | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast | |
from .utils import to_2tuple | |
if os.getenv('ENV_TYPE') == 'deepspeed': | |
try: | |
import deepspeed | |
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint | |
except: | |
print("Please 'pip install deepspeed'") | |
deepspeed = None | |
from torch.utils.checkpoint import checkpoint | |
else: | |
from torch.utils.checkpoint import checkpoint | |
try: | |
import xformers.ops as xops | |
except ImportError: | |
xops = None | |
print("Please 'pip install xformers'") | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
class LayerNormFp32(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x: torch.Tensor): | |
output = F.layer_norm( | |
x.float(), | |
self.normalized_shape, | |
self.weight.float() if self.weight is not None else None, | |
self.bias.float() if self.bias is not None else None, | |
self.eps, | |
) | |
return output.type_as(x) | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm (with cast back to input dtype).""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
return x.to(orig_type) | |
class QuickGELU(nn.Module): | |
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class LayerScale(nn.Module): | |
def __init__(self, dim, init_values=1e-5, inplace=False): | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x): | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
class PatchDropout(nn.Module): | |
""" | |
https://arxiv.org/abs/2212.00794 | |
""" | |
def __init__(self, prob, exclude_first_token=True): | |
super().__init__() | |
assert 0 <= prob < 1. | |
self.prob = prob | |
self.exclude_first_token = exclude_first_token # exclude CLS token | |
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") | |
def forward(self, x): | |
if not self.training or self.prob == 0.: | |
return x | |
if self.exclude_first_token: | |
cls_tokens, x = x[:, :1], x[:, 1:] | |
else: | |
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) | |
batch = x.size()[0] | |
num_tokens = x.size()[1] | |
batch_indices = torch.arange(batch) | |
batch_indices = batch_indices[..., None] | |
keep_prob = 1 - self.prob | |
num_patches_keep = max(1, int(num_tokens * keep_prob)) | |
rand = torch.randn(batch, num_tokens) | |
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices | |
x = x[batch_indices, patch_indices_keep] | |
if self.exclude_first_token: | |
x = torch.cat((cls_tokens, x), dim=1) | |
if self.training and os.getenv('RoPE') == '1': | |
return x, patch_indices_keep | |
return x | |
def _in_projection_packed( | |
q: torch.Tensor, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
w: torch.Tensor, | |
b: Optional[torch.Tensor] = None, | |
): | |
""" | |
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726 | |
""" | |
E = q.size(-1) | |
if k is v: | |
if q is k: | |
# self-attention | |
return F.linear(q, w, b).chunk(3, dim=-1) | |
else: | |
# encoder-decoder attention | |
w_q, w_kv = w.split([E, E * 2]) | |
if b is None: | |
b_q = b_kv = None | |
else: | |
b_q, b_kv = b.split([E, E * 2]) | |
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) | |
else: | |
w_q, w_k, w_v = w.chunk(3) | |
if b is None: | |
b_q = b_k = b_v = None | |
else: | |
b_q, b_k, b_v = b.chunk(3) | |
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=True, | |
scaled_cosine=False, | |
scale_heads=False, | |
logit_scale_max=math.log(1. / 0.01), | |
attn_drop=0., | |
proj_drop=0., | |
xattn=False, | |
rope=False | |
): | |
super().__init__() | |
self.scaled_cosine = scaled_cosine | |
self.scale_heads = scale_heads | |
assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.logit_scale_max = logit_scale_max | |
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original | |
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) | |
if qkv_bias: | |
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) | |
else: | |
self.in_proj_bias = None | |
if self.scaled_cosine: | |
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) | |
else: | |
self.logit_scale = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
if self.scale_heads: | |
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) | |
else: | |
self.head_scale = None | |
self.out_proj = nn.Linear(dim, dim) | |
self.out_drop = nn.Dropout(proj_drop) | |
self.xattn = xattn | |
self.xattn_drop = attn_drop | |
self.rope = rope | |
def forward(self, x, attn_mask: Optional[torch.Tensor] = None): | |
L, N, C = x.shape | |
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) | |
if self.xattn: | |
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) | |
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) | |
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) | |
x = xops.memory_efficient_attention( | |
q, k, v, | |
p=self.xattn_drop, | |
scale=self.scale if self.logit_scale is None else None, | |
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, | |
) | |
else: | |
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) | |
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) | |
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) | |
if self.logit_scale is not None: | |
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) | |
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() | |
attn = attn.view(N, self.num_heads, L, L) * logit_scale | |
attn = attn.view(-1, L, L) | |
else: | |
q = q * self.scale | |
attn = torch.bmm(q, k.transpose(-1, -2)) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) | |
new_attn_mask.masked_fill_(attn_mask, float("-inf")) | |
attn_mask = new_attn_mask | |
attn += attn_mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = torch.bmm(attn, v) | |
if self.head_scale is not None: | |
x = x.view(N, self.num_heads, L, C) * self.head_scale | |
x = x.view(-1, L, C) | |
x = x.transpose(0, 1).reshape(L, N, C) | |
x = self.out_proj(x) | |
x = self.out_drop(x) | |
return x | |
class CustomAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=True, | |
scaled_cosine=True, | |
scale_heads=False, | |
logit_scale_max=math.log(1. / 0.01), | |
attn_drop=0., | |
proj_drop=0., | |
xattn=False | |
): | |
super().__init__() | |
self.scaled_cosine = scaled_cosine | |
self.scale_heads = scale_heads | |
assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.logit_scale_max = logit_scale_max | |
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original | |
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) | |
if qkv_bias: | |
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) | |
else: | |
self.in_proj_bias = None | |
if self.scaled_cosine: | |
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) | |
else: | |
self.logit_scale = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
if self.scale_heads: | |
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) | |
else: | |
self.head_scale = None | |
self.out_proj = nn.Linear(dim, dim) | |
self.out_drop = nn.Dropout(proj_drop) | |
self.xattn = xattn | |
self.xattn_drop = attn_drop | |
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias) | |
N_q, B_q, C_q = q.shape | |
N_k, B_k, C_k = k.shape | |
N_v, B_v, C_v = v.shape | |
if self.xattn: | |
# B, N, C -> B, N, num_heads, C | |
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1) | |
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1) | |
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1) | |
x = xops.memory_efficient_attention( | |
q, k, v, | |
p=self.xattn_drop, | |
scale=self.scale if self.logit_scale is None else None, | |
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None | |
) | |
else: | |
# B*H, L, C | |
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1) | |
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1) | |
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1) | |
if self.logit_scale is not None: | |
# B*H, N_q, N_k | |
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) | |
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() | |
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale | |
attn = attn.view(-1, N_q, N_k) | |
else: | |
q = q * self.scale | |
attn = torch.bmm(q, k.transpose(-1, -2)) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) | |
new_attn_mask.masked_fill_(attn_mask, float("-inf")) | |
attn_mask = new_attn_mask | |
attn += attn_mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = torch.bmm(attn, v) | |
if self.head_scale is not None: | |
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale | |
x = x.view(-1, N_q, C_q) | |
x = x.transpose(0, 1).reshape(N_q, B_q, C_q) | |
x = self.out_proj(x) | |
x = self.out_drop(x) | |
return x | |
class CustomResidualAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
n_head: int, | |
mlp_ratio: float = 4.0, | |
ls_init_value: float = None, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = LayerNorm, | |
scale_cosine_attn: bool = False, | |
scale_heads: bool = False, | |
scale_attn: bool = False, | |
scale_fc: bool = False, | |
cross_attn: bool = False, | |
xattn: bool = False, | |
): | |
super().__init__() | |
self.ln_1 = norm_layer(d_model) | |
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1 | |
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1 | |
self.attn = CustomAttention( | |
d_model, n_head, | |
qkv_bias=True, | |
attn_drop=0., | |
proj_drop=0., | |
scaled_cosine=scale_cosine_attn, | |
scale_heads=scale_heads, | |
xattn=xattn | |
) | |
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() | |
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() | |
self.ln_2 = norm_layer(d_model) | |
mlp_width = int(d_model * mlp_ratio) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, mlp_width)), | |
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()), | |
("gelu", act_layer()), | |
("c_proj", nn.Linear(mlp_width, d_model)) | |
])) | |
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() | |
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask))) | |
q = q + self.ls_2(self.mlp(self.ln_2(q))) | |
return q | |
class CustomTransformer(nn.Module): | |
def __init__( | |
self, | |
width: int, | |
layers: int, | |
heads: int, | |
mlp_ratio: float = 4.0, | |
ls_init_value: float = None, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = LayerNorm, | |
scale_cosine_attn: bool = True, | |
scale_heads: bool = False, | |
scale_attn: bool = False, | |
scale_fc: bool = False, | |
cross_attn: bool = False, | |
xattn: bool = False, | |
): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.grad_checkpointing = False | |
self.xattn = xattn | |
self.resblocks = nn.ModuleList([ | |
CustomResidualAttentionBlock( | |
width, | |
heads, | |
mlp_ratio, | |
ls_init_value=ls_init_value, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
scale_cosine_attn=scale_cosine_attn, | |
scale_heads=scale_heads, | |
scale_attn=scale_attn, | |
scale_fc=scale_fc, | |
cross_attn=cross_attn, | |
xattn=xattn) | |
for _ in range(layers) | |
]) | |
def get_cast_dtype(self) -> torch.dtype: | |
return self.resblocks[0].mlp.c_fc.weight.dtype | |
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None): | |
if k is None and v is None: | |
k = v = q | |
for r in self.resblocks: | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
q = checkpoint(r, q, k, v, attn_mask) | |
else: | |
q = r(q, k, v, attn_mask=attn_mask) | |
return q | |
class ResidualAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
n_head: int, | |
mlp_ratio: float = 4.0, | |
ls_init_value: float = None, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = LayerNorm, | |
xattn: bool = False, | |
): | |
super().__init__() | |
self.ln_1 = norm_layer(d_model) | |
if xattn: | |
self.attn = Attention(d_model, n_head, xattn=True) | |
else: | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() | |
self.ln_2 = norm_layer(d_model) | |
mlp_width = int(d_model * mlp_ratio) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, mlp_width)), | |
("gelu", act_layer()), | |
("c_proj", nn.Linear(mlp_width, d_model)) | |
])) | |
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() | |
self.xattn = xattn | |
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None | |
if self.xattn: | |
return self.attn(x, attn_mask=attn_mask) | |
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] | |
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask)) | |
x = x + self.ls_2(self.mlp(self.ln_2(x))) | |
return x | |
class Transformer(nn.Module): | |
def __init__( | |
self, | |
width: int, | |
layers: int, | |
heads: int, | |
mlp_ratio: float = 4.0, | |
ls_init_value: float = None, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = LayerNorm, | |
xattn: bool = False, | |
): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.grad_checkpointing = False | |
self.resblocks = nn.ModuleList([ | |
ResidualAttentionBlock( | |
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn) | |
for _ in range(layers) | |
]) | |
def get_cast_dtype(self) -> torch.dtype: | |
return self.resblocks[0].mlp.c_fc.weight.dtype | |
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
for r in self.resblocks: | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
class VisionTransformer(nn.Module): | |
def __init__( | |
self, | |
image_size: int, | |
patch_size: int, | |
width: int, | |
layers: int, | |
heads: int, | |
mlp_ratio: float, | |
ls_init_value: float = None, | |
patch_dropout: float = 0., | |
global_average_pool: bool = False, | |
output_dim: int = 512, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = LayerNorm, | |
xattn: bool = False, | |
): | |
super().__init__() | |
self.image_size = to_2tuple(image_size) | |
self.patch_size = to_2tuple(patch_size) | |
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) | |
scale = width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) | |
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn | |
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() | |
self.ln_pre = norm_layer(width) | |
self.transformer = Transformer( | |
width, | |
layers, | |
heads, | |
mlp_ratio, | |
ls_init_value=ls_init_value, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
xattn=xattn | |
) | |
self.global_average_pool = global_average_pool | |
self.ln_post = norm_layer(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
for param in self.parameters(): | |
param.requires_grad = False | |
if unlocked_groups != 0: | |
groups = [ | |
[ | |
self.conv1, | |
self.class_embedding, | |
self.positional_embedding, | |
self.ln_pre, | |
], | |
*self.transformer.resblocks[:-1], | |
[ | |
self.transformer.resblocks[-1], | |
self.ln_post, | |
], | |
self.proj, | |
] | |
def _unlock(x): | |
if isinstance(x, Sequence): | |
for g in x: | |
_unlock(g) | |
else: | |
if isinstance(x, torch.nn.Parameter): | |
x.requires_grad = True | |
else: | |
for p in x.parameters(): | |
p.requires_grad = True | |
_unlock(groups[-unlocked_groups:]) | |
def get_num_layers(self): | |
return self.transformer.layers | |
def set_grad_checkpointing(self, enable=True): | |
self.transformer.grad_checkpointing = enable | |
def no_weight_decay(self): | |
return {'positional_embedding', 'class_embedding'} | |
def forward(self, x: torch.Tensor, return_all_features: bool=False): | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat( | |
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), | |
x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.positional_embedding.to(x.dtype) | |
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in | |
x = self.patch_dropout(x) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
if not return_all_features: | |
if self.global_average_pool: | |
x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1) | |
else: | |
x = x[:, 0] | |
x = self.ln_post(x) | |
if self.proj is not None: | |
x = x @ self.proj | |
return x | |
class TextTransformer(nn.Module): | |
def __init__( | |
self, | |
context_length: int = 77, | |
vocab_size: int = 49408, | |
width: int = 512, | |
heads: int = 8, | |
layers: int = 12, | |
ls_init_value: float = None, | |
output_dim: int = 512, | |
act_layer: Callable = nn.GELU, | |
norm_layer: Callable = LayerNorm, | |
xattn: bool= False, | |
attn_mask: bool = True | |
): | |
super().__init__() | |
self.context_length = context_length | |
self.vocab_size = vocab_size | |
self.width = width | |
self.output_dim = output_dim | |
self.token_embedding = nn.Embedding(vocab_size, width) | |
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width)) | |
self.transformer = Transformer( | |
width=width, | |
layers=layers, | |
heads=heads, | |
ls_init_value=ls_init_value, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
xattn=xattn | |
) | |
self.xattn = xattn | |
self.ln_final = norm_layer(width) | |
self.text_projection = nn.Parameter(torch.empty(width, output_dim)) | |
if attn_mask: | |
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) | |
else: | |
self.attn_mask = None | |
self.init_parameters() | |
def init_parameters(self): | |
nn.init.normal_(self.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.positional_embedding, std=0.01) | |
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) | |
attn_std = self.transformer.width ** -0.5 | |
fc_std = (2 * self.transformer.width) ** -0.5 | |
for block in self.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |
if self.text_projection is not None: | |
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) | |
def set_grad_checkpointing(self, enable=True): | |
self.transformer.grad_checkpointing = enable | |
def no_weight_decay(self): | |
# return {'positional_embedding', 'token_embedding'} | |
return {'positional_embedding'} | |
def get_num_layers(self): | |
return self.transformer.layers | |
def build_attention_mask(self): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(self.context_length, self.context_length) | |
mask.fill_(float("-inf")) | |
mask.triu_(1) # zero out the lower diagonal | |
return mask | |
def forward(self, text, return_all_features: bool=False): | |
cast_dtype = self.transformer.get_cast_dtype() | |
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding.to(cast_dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x, attn_mask=self.attn_mask) | |
# x = self.transformer(x) # no attention mask is applied | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x) | |
if not return_all_features: | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return x | |