Spaces:
Running
Running
import json | |
import os | |
import re | |
import numpy as np | |
import onnxruntime | |
from nltk.tokenize import TweetTokenizer | |
from sacremoses import MosesDetokenizer | |
from .syllable_splitter import SyllableSplitter | |
ABJAD_MAPPING = { | |
"a": "a", | |
"b": "bé", | |
"c": "cé", | |
"d": "dé", | |
"e": "é", | |
"f": "èf", | |
"g": "gé", | |
"h": "ha", | |
"i": "i", | |
"j": "jé", | |
"k": "ka", | |
"l": "èl", | |
"m": "èm", | |
"n": "èn", | |
"o": "o", | |
"p": "pé", | |
"q": "ki", | |
"r": "èr", | |
"s": "ès", | |
"t": "té", | |
"u": "u", | |
"v": "vé", | |
"w": "wé", | |
"x": "èks", | |
"y": "yé", | |
"z": "zèt", | |
} | |
PHONETIC_MAPPING = { | |
"sy": "ʃ", | |
"ny": "ɲ", | |
"ng": "ŋ", | |
"dj": "dʒ", | |
"'": "ʔ", | |
"c": "tʃ", | |
"é": "e", | |
"è": "ɛ", | |
"ê": "ə", | |
"g": "ɡ", | |
"I": "ɪ", | |
"j": "dʒ", | |
"ô": "ɔ", | |
"q": "k", | |
"U": "ʊ", | |
"v": "f", | |
"x": "ks", | |
"y": "j", | |
} | |
dirname = os.path.dirname(__file__) | |
# Predict pronounciation with BERT Masking | |
# Read more: https://w11wo.github.io/posts/2022/04/predicting-phonemes-with-bert/ | |
class Predictor: | |
def __init__(self, model_path): | |
# fmt: off | |
self.vocab = ['', '[UNK]', 'a', 'n', 'ê', 'e', 'i', 'r', 'k', 's', 't', 'g', 'm', 'u', 'l', 'p', 'o', 'd', 'b', 'h', 'c', 'j', 'y', 'f', 'w', 'v', 'z', 'x', 'q', '[mask]'] | |
self.mask_token_id = self.vocab.index("[mask]") | |
# fmt: on | |
self.session = onnxruntime.InferenceSession(model_path) | |
def predict(self, word: str) -> str: | |
""" | |
Predict the phonetic representation of a word. | |
Args: | |
word (str): The word to predict. | |
Returns: | |
str: The predicted phonetic representation of the word. | |
""" | |
text = [self.vocab.index(c) if c != "e" else self.mask_token_id for c in word] | |
text.extend([0] * (32 - len(text))) # Pad to 32 tokens | |
inputs = np.array([text], dtype=np.int64) | |
(predictions,) = self.session.run(None, {"input_4": inputs}) | |
# find masked idx token | |
_, masked_index = np.where(inputs == self.mask_token_id) | |
# get prediction at those masked index only | |
mask_prediction = predictions[0][masked_index] | |
predicted_ids = np.argmax(mask_prediction, axis=1) | |
# replace mask with predicted token | |
for i, idx in enumerate(masked_index): | |
text[idx] = predicted_ids[i] | |
return "".join([self.vocab[i] for i in text if i != 0]) | |
class G2P: | |
def __init__(self): | |
self.tokenizer = TweetTokenizer() | |
self.detokenizer = MosesDetokenizer(lang="id") | |
dict_path = os.path.join(dirname, "data/dict.json") | |
with open(dict_path) as f: | |
self.dict = json.load(f) | |
model_path = os.path.join(dirname, "model/bert_pron.onnx") | |
self.predictor = Predictor(model_path) | |
self.syllable_splitter = SyllableSplitter() | |
def __call__(self, text: str) -> str: | |
""" | |
Convert text to phonetic representation. | |
Args: | |
text (str): The text to convert. | |
Returns: | |
str: The phonetic representation of the text. | |
""" | |
text = text.lower() | |
text = re.sub(r"[^ a-z0-9'\.,?!-]", "", text) | |
text = text.replace("-", " ") | |
prons = [] | |
words = self.tokenizer.tokenize(text) | |
for word in words: | |
# PUEBI pronunciation | |
if word in self.dict: | |
pron = self.dict[word] | |
elif len(word) == 1 and word in ABJAD_MAPPING: | |
pron = ABJAD_MAPPING[word] | |
elif "e" not in word or not word.isalpha(): | |
pron = word | |
elif "e" in word: | |
pron = self.predictor.predict(word) | |
# Replace alofon /e/ with e (temporary) | |
pron = pron.replace("é", "e") | |
pron = pron.replace("è", "e") | |
# Replace /x/ with /s/ | |
if pron.startswith("x"): | |
pron = "s" + pron[1:] | |
sylls = self.syllable_splitter.split_syllables(pron) | |
# Decide where to put the stress | |
stress_loc = len(sylls) - 1 | |
if len(sylls) > 1 and "ê" in sylls[-2]: | |
if "ê" in sylls[-1]: | |
stress_loc = len(sylls) - 2 | |
else: | |
stress_loc = len(sylls) | |
# Apply rules on syllable basis | |
# All alophone are set to tense by default | |
# and will be changed to lax if needed | |
alophone = {"e": "é", "o": "o"} | |
alophone_map = {"i": "I", "u": "U", "e": "è", "o": "ô"} | |
for i, syll in enumerate(sylls, start=1): | |
# Put Syllable stress | |
if i == stress_loc: | |
syll = "ˈ" + syll | |
# Alophone syllable rules | |
for v in ["e", "o"]: | |
# Replace with lax allphone [ɛ, ɔ] if | |
# in closed final syllables | |
if v in syll and not syll.endswith(v) and i == len(sylls): | |
alophone[v] = alophone_map[v] | |
# Alophone syllable stress rules | |
for v in ["i", "u"]: | |
# Replace with lax allphone [ɪ, ʊ] if | |
# in the middle of syllable without stress | |
# and not ends with coda nasal [m, n, ng] (except for final syllable) | |
if ( | |
v in syll | |
and not syll.startswith("ˈ") | |
and not syll.endswith(v) | |
and ( | |
not any(syll.endswith(x) for x in ["m", "n", "ng"]) | |
or i == len(sylls) | |
) | |
): | |
syll = syll.replace(v, alophone_map[v]) | |
if syll.endswith("nk"): | |
syll = syll[:-2] + "ng" | |
elif syll.endswith("d"): | |
syll = syll[:-1] + "t" | |
elif syll.endswith("b"): | |
syll = syll[:-1] + "p" | |
elif syll.endswith("k") or ( | |
syll.endswith("g") and not syll.endswith("ng") | |
): | |
syll = syll[:-1] + "'" | |
sylls[i - 1] = syll | |
pron = "".join(sylls) | |
# Apply phonetic and alophone mapping | |
for v in alophone: | |
if v == "o" and pron.count("o") == 1: | |
continue | |
pron = pron.replace(v, alophone[v]) | |
for g, p in PHONETIC_MAPPING.items(): | |
pron = pron.replace(g, p) | |
pron = pron.replace("kh", "x") | |
prons.append(pron) | |
prons.append(" ") | |
return self.detokenizer.detokenize(prons) | |