File size: 12,228 Bytes
5555256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e6e67
5555256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d10dd
 
 
 
 
 
 
5555256
 
52d10dd
 
5555256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from __future__ import annotations

import gc
import json
import tempfile
from typing import Generator

import numpy as np
import PIL.Image
import torch
from diffusers import DiffusionPipeline, StableDiffusionUpscalePipeline
from diffusers.pipelines.deepfloyd_if import (fast27_timesteps,
                                              smart27_timesteps,
                                              smart50_timesteps,
                                              smart100_timesteps,
                                              smart185_timesteps)

from settings import (DISABLE_AUTOMATIC_CPU_OFFLOAD, DISABLE_SD_X4_UPSCALER,
                      HF_TOKEN, MAX_NUM_IMAGES, MAX_NUM_STEPS, MAX_SEED,
                      RUN_GARBAGE_COLLECTION)


class Model:
    def __init__(self):
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self.pipe = None
        self.super_res_1_pipe = None
        self.super_res_2_pipe = None
        self.watermark_image = None

        if torch.cuda.is_available():
            self.load_weights()
            self.watermark_image = PIL.Image.fromarray(
                self.pipe.watermarker.watermark_image.to(
                    torch.uint8).cpu().numpy(),
                mode='RGBA')

    def load_weights(self) -> None:
        self.pipe = DiffusionPipeline.from_pretrained(
            'DeepFloyd/IF-I-XL-v1.0',
            torch_dtype=torch.float16,
            variant='fp16',
            use_safetensors=True,
            use_auth_token=HF_TOKEN)
        self.super_res_1_pipe = DiffusionPipeline.from_pretrained(
            'DeepFloyd/IF-II-L-v1.0',
            text_encoder=None,
            torch_dtype=torch.float16,
            variant='fp16',
            use_safetensors=True,
            use_auth_token=HF_TOKEN)

        if not DISABLE_SD_X4_UPSCALER:
            self.super_res_2_pipe = StableDiffusionUpscalePipeline.from_pretrained(
                'stabilityai/stable-diffusion-x4-upscaler',
                torch_dtype=torch.float16)

        if DISABLE_AUTOMATIC_CPU_OFFLOAD:
            self.pipe.to(self.device)
            self.super_res_1_pipe.to(self.device)

            self.pipe.unet.to(memory_format=torch.channels_last)
            self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)

            self.super_res_1_pipe.unet.to(memory_format=torch.channels_last)
            self.super_res_1_pipe.unet = torch.compile(self.super_res_1_pipe.unet, mode="reduce-overhead", fullgraph=True)

            if not DISABLE_SD_X4_UPSCALER:
                self.super_res_2_pipe.to(self.device)
                self.super_res_2_pipe.unet.to(memory_format=torch.channels_last)
                self.super_res_2_pipe.unet = torch.compile(self.super_res_2_pipe.unet, mode="reduce-overhead", fullgraph=True)
        else:
            self.pipe.enable_model_cpu_offload()
            self.super_res_1_pipe.enable_model_cpu_offload()
            if not DISABLE_SD_X4_UPSCALER:
                self.super_res_2_pipe.enable_model_cpu_offload()

    def apply_watermark_to_sd_x4_upscaler_results(
            self, images: list[PIL.Image.Image]) -> None:
        w, h = images[0].size

        stability_x4_upscaler_sample_size = 128

        coef = min(h / stability_x4_upscaler_sample_size,
                   w / stability_x4_upscaler_sample_size)
        img_h, img_w = (int(h / coef), int(w / coef)) if coef < 1 else (h, w)

        S1, S2 = 1024**2, img_w * img_h
        K = (S2 / S1)**0.5
        watermark_size = int(K * 62)
        watermark_x = img_w - int(14 * K)
        watermark_y = img_h - int(14 * K)

        watermark_image = self.watermark_image.copy().resize(
            (watermark_size, watermark_size),
            PIL.Image.Resampling.BICUBIC,
            reducing_gap=None)

        for image in images:
            image.paste(watermark_image,
                        box=(
                            watermark_x - watermark_size,
                            watermark_y - watermark_size,
                            watermark_x,
                            watermark_y,
                        ),
                        mask=watermark_image.split()[-1])

    @staticmethod
    def to_pil_images(images: torch.Tensor) -> list[PIL.Image.Image]:
        images = (images / 2 + 0.5).clamp(0, 1)
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        images = np.round(images * 255).astype(np.uint8)
        return [PIL.Image.fromarray(image) for image in images]

    @staticmethod
    def check_seed(seed: int) -> None:
        if not 0 <= seed <= MAX_SEED:
            raise ValueError

    @staticmethod
    def check_num_images(num_images: int) -> None:
        if not 1 <= num_images <= MAX_NUM_IMAGES:
            raise ValueError

    @staticmethod
    def check_num_inference_steps(num_steps: int) -> None:
        if not 1 <= num_steps <= MAX_NUM_STEPS:
            raise ValueError

    @staticmethod
    def get_custom_timesteps(name: str) -> list[int] | None:
        if name == 'none':
            timesteps = None
        elif name == 'fast27':
            timesteps = fast27_timesteps
        elif name == 'smart27':
            timesteps = smart27_timesteps
        elif name == 'smart50':
            timesteps = smart50_timesteps
        elif name == 'smart100':
            timesteps = smart100_timesteps
        elif name == 'smart185':
            timesteps = smart185_timesteps
        else:
            raise ValueError
        return timesteps

    @staticmethod
    def run_garbage_collection():
        gc.collect()
        torch.cuda.empty_cache()

    def run_stage1(
        self,
        prompt: str,
        negative_prompt: str = '',
        seed: int = 0,
        num_images: int = 1,
        guidance_scale_1: float = 7.0,
        custom_timesteps_1: str = 'smart100',
        num_inference_steps_1: int = 100,
    ) -> tuple[list[PIL.Image.Image], str, str]:
        self.check_seed(seed)
        self.check_num_images(num_images)
        self.check_num_inference_steps(num_inference_steps_1)

        if RUN_GARBAGE_COLLECTION:
            self.run_garbage_collection()

        generator = torch.Generator(device=self.device).manual_seed(seed)

        prompt_embeds, negative_embeds = self.pipe.encode_prompt(
            prompt=prompt, negative_prompt=negative_prompt)

        timesteps = self.get_custom_timesteps(custom_timesteps_1)

        images = self.pipe(prompt_embeds=prompt_embeds,
                           negative_prompt_embeds=negative_embeds,
                           num_images_per_prompt=num_images,
                           guidance_scale=guidance_scale_1,
                           timesteps=timesteps,
                           num_inference_steps=num_inference_steps_1,
                           generator=generator,
                           output_type='pt').images
        pil_images = self.to_pil_images(images)
        self.pipe.watermarker.apply_watermark(
            pil_images, self.pipe.unet.config.sample_size)

        stage1_params = {
            'prompt': prompt,
            'negative_prompt': negative_prompt,
            'seed': seed,
            'num_images': num_images,
            'guidance_scale_1': guidance_scale_1,
            'custom_timesteps_1': custom_timesteps_1,
            'num_inference_steps_1': num_inference_steps_1,
        }
        with tempfile.NamedTemporaryFile(mode='w', delete=False) as param_file:
            param_file.write(json.dumps(stage1_params))
        stage1_result = {
            'prompt_embeds': prompt_embeds,
            'negative_embeds': negative_embeds,
            'images': images,
            'pil_images': pil_images,
        }
        with tempfile.NamedTemporaryFile(delete=False) as result_file:
            torch.save(stage1_result, result_file.name)
        return pil_images, param_file.name, result_file.name

    def run_stage2(
        self,
        stage1_result_path: str,
        stage2_index: int,
        seed_2: int = 0,
        guidance_scale_2: float = 4.0,
        custom_timesteps_2: str = 'smart50',
        num_inference_steps_2: int = 50,
        disable_watermark: bool = False,
    ) -> PIL.Image.Image:
        self.check_seed(seed_2)
        self.check_num_inference_steps(num_inference_steps_2)

        if RUN_GARBAGE_COLLECTION:
            self.run_garbage_collection()

        generator = torch.Generator(device=self.device).manual_seed(seed_2)

        stage1_result = torch.load(stage1_result_path)
        prompt_embeds = stage1_result['prompt_embeds']
        negative_embeds = stage1_result['negative_embeds']
        images = stage1_result['images']
        images = images[[stage2_index]]

        timesteps = self.get_custom_timesteps(custom_timesteps_2)

        out = self.super_res_1_pipe(image=images,
                                    prompt_embeds=prompt_embeds,
                                    negative_prompt_embeds=negative_embeds,
                                    num_images_per_prompt=1,
                                    guidance_scale=guidance_scale_2,
                                    timesteps=timesteps,
                                    num_inference_steps=num_inference_steps_2,
                                    generator=generator,
                                    output_type='pt',
                                    noise_level=250).images
        pil_images = self.to_pil_images(out)

        if disable_watermark:
            return pil_images[0]

        self.super_res_1_pipe.watermarker.apply_watermark(
            pil_images, self.super_res_1_pipe.unet.config.sample_size)
        return pil_images[0]

    def run_stage3(
        self,
        image: PIL.Image.Image,
        prompt: str = '',
        negative_prompt: str = '',
        seed_3: int = 0,
        guidance_scale_3: float = 9.0,
        num_inference_steps_3: int = 75,
    ) -> PIL.Image.Image:
        self.check_seed(seed_3)
        self.check_num_inference_steps(num_inference_steps_3)

        if RUN_GARBAGE_COLLECTION:
            self.run_garbage_collection()

        generator = torch.Generator(device=self.device).manual_seed(seed_3)
        out = self.super_res_2_pipe(image=image,
                                    prompt=prompt,
                                    negative_prompt=negative_prompt,
                                    num_images_per_prompt=1,
                                    guidance_scale=guidance_scale_3,
                                    num_inference_steps=num_inference_steps_3,
                                    generator=generator,
                                    noise_level=100).images
        self.apply_watermark_to_sd_x4_upscaler_results(out)
        return out[0]

    def run_stage2_3(
        self,
        stage1_result_path: str,
        stage2_index: int,
        seed_2: int = 0,
        guidance_scale_2: float = 4.0,
        custom_timesteps_2: str = 'smart50',
        num_inference_steps_2: int = 50,
        prompt: str = '',
        negative_prompt: str = '',
        seed_3: int = 0,
        guidance_scale_3: float = 9.0,
        num_inference_steps_3: int = 75,
    ) -> Generator[PIL.Image.Image]:
        self.check_seed(seed_3)
        self.check_num_inference_steps(num_inference_steps_3)

        out_image = self.run_stage2(
            stage1_result_path=stage1_result_path,
            stage2_index=stage2_index,
            seed_2=seed_2,
            guidance_scale_2=guidance_scale_2,
            custom_timesteps_2=custom_timesteps_2,
            num_inference_steps_2=num_inference_steps_2,
            disable_watermark=True)
        temp_image = out_image.copy()
        self.super_res_1_pipe.watermarker.apply_watermark(
            [temp_image], self.super_res_1_pipe.unet.config.sample_size)
        yield temp_image
        yield self.run_stage3(image=out_image,
                              prompt=prompt,
                              negative_prompt=negative_prompt,
                              seed_3=seed_3,
                              guidance_scale_3=guidance_scale_3,
                              num_inference_steps_3=num_inference_steps_3)