jeylau's picture
Update app.py
1f72d76
raw
history blame
8.32 kB
# Adapted from https://huggingface.co/spaces/hlydecker/MegaDetector_v5
# Adapted from https://huggingface.co/spaces/sofmi/MegaDetector_DLClive/blob/main/app.py
# Adapted from https://huggingface.co/spaces/Neslihan/megadetector_dlcmodels/blob/main/app.py
# Adapted from https://huggingface.co/spaces/DeepLabCut/MegaDetector_DeepLabCut
import os
import yaml
import numpy as np
from matplotlib import cm
import gradio as gr
import deeplabcut
import dlclibrary
import dlclive
import transformers
from PIL import Image, ImageColor, ImageFont, ImageDraw
import requests
from viz_utils import save_results_as_json, draw_keypoints_on_image, draw_bbox_w_text, save_results_only_dlc
from detection_utils import predict_md, crop_animal_detections
from dlc_utils import predict_dlc
from ui_utils import gradio_inputs_for_MD_DLC, gradio_outputs_for_MD_DLC, gradio_description_and_examples
from deeplabcut.utils import auxiliaryfunctions
from dlclibrary.dlcmodelzoo.modelzoo_download import (
download_huggingface_model,
MODELOPTIONS,
)
from dlclive import DLCLive, Processor
# TESTING (passes) download the SuperAnimal models:
#model = 'superanimal_topviewmouse'
#train_dir = 'DLC_models/sa-tvm'
#download_huggingface_model(model, train_dir)
# grab demo data cooco cat:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# megadetector and dlc model look up
MD_models_dict = {'md_v5a': "MD_models/md_v5a.0.0.pt", #
'md_v5b': "MD_models/md_v5b.0.0.pt"}
# DLC models target dirs
DLC_models_dict = {'superanimal_topviewmouse': "DLC_models/sa-tvm",
'superanimal_quadruped': "DLC_models/sa-q",
'full_human': "DLC_models/DLC_human_dancing/"}
#####################################################
def predict_pipeline(img_input,
mega_model_input,
dlc_model_input_str,
flag_dlc_only,
flag_show_str_labels,
bbox_likelihood_th,
kpts_likelihood_th,
font_style,
font_size,
keypt_color,
marker_size,
):
if not flag_dlc_only:
############################################################
# ### Run Megadetector
md_results = predict_md(img_input,
MD_models_dict[mega_model_input], #mega_model_input,
size=640) #Image.fromarray(results.imgs[0])
################################################################
# Obtain animal crops for bboxes with confidence above th
list_crops = crop_animal_detections(img_input,
md_results,
bbox_likelihood_th)
############################################################
## Get DLC model and label map
# If model is found: do not download (previous execution is likely within same day)
# TODO: can we ask the user whether to reload dlc model if a directory is found?
if os.path.isdir(DLC_models_dict[dlc_model_input_str]) and \
len(os.listdir(DLC_models_dict[dlc_model_input_str])) > 0:
path_to_DLCmodel = DLC_models_dict[dlc_model_input_str]
else:
path_to_DLCmodel = DLC_models_dict[dlc_model_input_str]
download_huggingface_model(dlc_model_input_str, path_to_DLCmodel)
# extract map label ids to strings
pose_cfg_path = os.path.join(DLC_models_dict[dlc_model_input_str],
'pose_cfg.yaml')
with open(pose_cfg_path, "r") as stream:
pose_cfg_dict = yaml.safe_load(stream)
map_label_id_to_str = dict([(k,v) for k,v in zip([el[0] for el in pose_cfg_dict['all_joints']], # pose_cfg_dict['all_joints'] is a list of one-element lists,
pose_cfg_dict['all_joints_names'])])
##############################################################
# Run DLC and visualize results
dlc_proc = Processor() #TODO: update deeplabcut.video_inference_superanimal() once merged
# if required: ignore MD crops and run DLC on full image [mostly for testing]
if flag_dlc_only:
# compute kpts on input img
list_kpts_per_crop = predict_dlc([np.asarray(img_input)],
kpts_likelihood_th,
path_to_DLCmodel,
dlc_proc)
# draw kpts on input img #fix!
draw_keypoints_on_image(img_input,
list_kpts_per_crop[0], # a numpy array with shape [num_keypoints, 2].
map_label_id_to_str,
flag_show_str_labels,
use_normalized_coordinates=False,
font_style=font_style,
font_size=font_size,
keypt_color=keypt_color,
marker_size=marker_size)
donw_file = save_results_only_dlc(list_kpts_per_crop[0], map_label_id_to_str,dlc_model_input_str)
return img_input, donw_file
else:
# Compute kpts for each crop
list_kpts_per_crop = predict_dlc(list_crops,
kpts_likelihood_th,
path_to_DLCmodel,
dlc_proc)
# resize input image to match megadetector output
img_background = img_input.resize((md_results.ims[0].shape[1],
md_results.ims[0].shape[0]))
# draw keypoints on each crop and paste to background img
for ic, (np_crop, kpts_crop) in enumerate(zip(list_crops,
list_kpts_per_crop)):
img_crop = Image.fromarray(np_crop)
# Draw keypts on crop
draw_keypoints_on_image(img_crop,
kpts_crop, # a numpy array with shape [num_keypoints, 2].
map_label_id_to_str,
flag_show_str_labels,
use_normalized_coordinates=False, # if True, then I should use md_results.xyxyn for list_kpts_crop
font_style=font_style,
font_size=font_size,
keypt_color=keypt_color,
marker_size=marker_size)
# Paste crop in original image
img_background.paste(img_crop,
box = tuple([int(t) for t in md_results.xyxy[0][ic,:2]]))
# Plot bbox
bb_per_animal = md_results.xyxy[0].tolist()[ic]
pred = md_results.xyxy[0].tolist()[ic][4]
if bbox_likelihood_th < pred:
draw_bbox_w_text(img_background,
bb_per_animal,
font_size=font_size) # TODO: add selectable color for bbox?
# Save detection results as json
download_file = save_results_as_json(md_results,list_kpts_per_crop,map_label_id_to_str, bbox_likelihood_th,dlc_model_input_str,mega_model_input)
return img_background, download_file
#########################################################
# Define user interface and launch
inputs = gradio_inputs_for_MD_DLC(list(MD_models_dict.keys()),
list(DLC_models_dict.keys()))
outputs = gradio_outputs_for_MD_DLC()
[gr_title,
gr_description,
examples] = gradio_description_and_examples()
# launch
demo = gr.Interface(predict_pipeline,
inputs=inputs,
outputs=outputs,
title=gr_title,
description=gr_description,
examples=examples,
theme="huggingface")
demo.launch(enable_queue=True, share=True)