Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,34 @@ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
39 |
image = Image.open(requests.get(url, stream=True).raw)
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
|
|
|
39 |
image = Image.open(requests.get(url, stream=True).raw)
|
40 |
|
41 |
|
42 |
+
#####################################################
|
43 |
+
def predict_pipeline(img_input,
|
44 |
+
mega_model_input,
|
45 |
+
dlc_model_input_str,
|
46 |
+
flag_dlc_only,
|
47 |
+
flag_show_str_labels,
|
48 |
+
bbox_likelihood_th,
|
49 |
+
kpts_likelihood_th,
|
50 |
+
font_style,
|
51 |
+
font_size,
|
52 |
+
keypt_color,
|
53 |
+
marker_size,
|
54 |
+
):
|
55 |
|
56 |
+
if not flag_dlc_only:
|
57 |
+
############################################################
|
58 |
+
# ### Run Megadetector
|
59 |
+
md_results = predict_md(img_input,
|
60 |
+
MD_models_dict[mega_model_input], #mega_model_input,
|
61 |
+
size=640) #Image.fromarray(results.imgs[0])
|
62 |
+
|
63 |
+
################################################################
|
64 |
+
# Obtain animal crops for bboxes with confidence above th
|
65 |
+
list_crops = crop_animal_detections(img_input,
|
66 |
+
md_results,
|
67 |
+
bbox_likelihood_th)
|
68 |
+
|
69 |
+
############################################################
|
70 |
|
71 |
|
72 |
|