File size: 9,282 Bytes
3169cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# -*- coding: utf-8 -*-
# @Time    : 2022/2/17 11:26 上午
# @Author  : JianingWang
# @File    : kg.py
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
from collections import OrderedDict
from transformers.models.bert import BertPreTrainedModel, BertModel
from transformers.models.bert.modeling_bert import BertOnlyMLMHead

class MLPLayer(nn.Module):
    """
    Head for getting sentence representations over RoBERTa/BERT"s CLS representation.
    """

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = self.activation(x)

        return x

class Similarity(nn.Module):
    """
    Dot product or cosine similarity
    """

    def __init__(self, temp):
        super().__init__()
        self.temp = temp
        self.cos = nn.CosineSimilarity(dim=-1)

    def forward(self, x, y):
        return self.cos(x, y) / self.temp

class BertForPretrainWithKG(BertPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.cls = BertOnlyMLMHead(config)
        self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
        self.post_init()

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            labels=None,
            ner_labels=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
    ):

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs.last_hidden_state
        # mlm
        prediction_scores = self.cls(sequence_output)
        # ner
        sequence_output = self.dropout(sequence_output)
        ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)

        # mlm
        masked_lm_loss, ner_loss, total_loss = None, None, None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if ner_labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss

            active_loss = attention_mask.repeat(self.config.entity_type_num, 1, 1).view(-1) == 1
            active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
            active_labels = torch.where(
                active_loss, ner_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(ner_labels)
            )
            ner_loss = loss_fct(active_logits, active_labels)

        if masked_lm_loss:
            total_loss = masked_lm_loss + ner_loss * 4

        return OrderedDict([
            ("loss", total_loss),
            ("mlm_loss", masked_lm_loss.unsqueeze(0)),
            ("ner_loss", ner_loss.unsqueeze(0)),
            ("logits", prediction_scores.argmax(2)),
            ("ner_logits", ner_logits.argmax(3))
        ])
        # MaskedLMOutput(
        #     loss=total_loss,
        #     logits=prediction_scores.argmax(2),
        #     ner_l
        #     hidden_states=outputs.hidden_states,
        #     attentions=outputs.attentions,
        # )


class BertForPretrainWithKGV2(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.cls = BertOnlyMLMHead(config)
        self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
        self.mlp = MLPLayer(config)
        self.sim = Similarity(0.05)
        self.post_init()

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            labels=None,
            ner_labels=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
    ):

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs.last_hidden_state
        # mlm
        prediction_scores = self.cls(sequence_output)
        # ner
        sequence_output = self.dropout(sequence_output)
        ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)

        # mlm
        masked_lm_loss, ner_loss, total_loss = None, None, None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if ner_labels is not None:
            loss_fct = CrossEntropyLoss()
            active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
            # padding 的label是-100
            ner_loss = loss_fct(active_logits, ner_labels.view(-1))

        if masked_lm_loss:
            total_loss = masked_lm_loss

        if ner_loss:
            total_loss = total_loss + ner_loss

        # 对比cls loss
        # cls_hidden = outputs.pooler_output
        cls_hidden = sequence_output[:, 0]
        simcse_loss = self.simcse_unsup_loss2(cls_hidden)
        if simcse_loss:
            total_loss = total_loss + simcse_loss*10

        ner_out = ner_logits.argmax(3)
        return OrderedDict([
            ("loss", total_loss),
            ("mlm_loss", masked_lm_loss.unsqueeze(0)),
            ("ner_loss", ner_loss.unsqueeze(0)),
            ("logits", prediction_scores.argmax(2)),
            ("ner_logits", ner_out.view(ner_out.shape[0], -1)),
            ("simcse_loss", simcse_loss.unsqueeze(0))
        ])

    def simcse_unsup_loss2(self, pooler_output):
        pooler_output = pooler_output.view((-1, 2, pooler_output.size(-1)))
        pooler_output = self.mlp(pooler_output)
        z1, z2 = pooler_output[:, 0], pooler_output[:, 1]
        cos_sim = self.sim(z1.unsqueeze(1), z2.unsqueeze(0))
        labels = torch.arange(cos_sim.size(0)).long().to(pooler_output.device)
        loss_fct = nn.CrossEntropyLoss()
        loss = loss_fct(cos_sim, labels)
        return loss

    @staticmethod
    def simcse_unsup_loss(y_pred: "tensor") -> "tensor":
        # 得到y_pred对应的label, [1, 0, 3, 2, ..., batch_size-1, batch_size-2]
        y_true = torch.arange(y_pred.shape[0], device=y_pred.device)
        y_true = (y_true - y_true % 2 * 2) + 1
        # batch内两两计算相似度, 得到相似度矩阵(对角矩阵)
        sim = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=-1)
        # sim = torch.mm(y_pred, y_pred.transpose(0, 1))
        # 将相似度矩阵对角线置为很小的值, 消除自身的影响
        sim = sim - torch.eye(y_pred.shape[0], device=y_pred.device) * 1e12
        # 相似度矩阵除以温度系数
        sim = sim/0.05
        # 计算相似度矩阵与y_true的交叉熵损失
        loss = F.cross_entropy(sim, y_true)
        print(loss)
        return loss