File size: 22,422 Bytes
d131d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# -*- coding: utf-8 -*-
# @Time    : 2022/4/21 5:30 下午
# @Author  : JianingWang
# @File    : global_pointer.py
from typing import Optional
import torch
import numpy as np
import torch.nn as nn
from dataclasses import dataclass
from torch.nn import BCEWithLogitsLoss
from transformers import MegatronBertModel, MegatronBertPreTrainedModel
from transformers.file_utils import ModelOutput
from transformers.models.bert import BertPreTrainedModel, BertModel
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
from roformer import RoFormerPreTrainedModel, RoFormerModel, RoFormerModel


class RawGlobalPointer(nn.Module):
    def __init__(self, encoder, ent_type_size, inner_dim, RoPE=True):
        # encodr: RoBerta-Large as encoder
        # inner_dim: 64
        # ent_type_size: ent_cls_num
        super().__init__()
        self.encoder = encoder
        self.ent_type_size = ent_type_size
        self.inner_dim = inner_dim
        self.hidden_size = encoder.config.hidden_size
        self.dense = nn.Linear(self.hidden_size, self.ent_type_size * self.inner_dim * 2)

        self.RoPE = RoPE

    def sinusoidal_position_embedding(self, batch_size, seq_len, output_dim):
        position_ids = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(-1)

        indices = torch.arange(0, output_dim // 2, dtype=torch.float)
        indices = torch.pow(10000, -2 * indices / output_dim)
        embeddings = position_ids * indices
        embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
        embeddings = embeddings.repeat((batch_size, *([1] * len(embeddings.shape))))
        embeddings = torch.reshape(embeddings, (batch_size, seq_len, output_dim))
        embeddings = embeddings.to(self.device)
        return embeddings

    def forward(self, input_ids, attention_mask, token_type_ids):
        self.device = input_ids.device

        context_outputs = self.encoder(input_ids, attention_mask, token_type_ids)
        # last_hidden_state:(batch_size, seq_len, hidden_size)
        last_hidden_state = context_outputs[0]

        batch_size = last_hidden_state.size()[0]
        seq_len = last_hidden_state.size()[1]

        outputs = self.dense(last_hidden_state)
        outputs = torch.split(outputs, self.inner_dim * 2, dim=-1)
        outputs = torch.stack(outputs, dim=-2)
        qw, kw = outputs[..., :self.inner_dim], outputs[..., self.inner_dim:]
        if self.RoPE:
            # pos_emb:(batch_size, seq_len, inner_dim)
            pos_emb = self.sinusoidal_position_embedding(batch_size, seq_len, self.inner_dim)
            cos_pos = pos_emb[..., None, 1::2].repeat_interleave(2, dim=-1)
            sin_pos = pos_emb[..., None, ::2].repeat_interleave(2, dim=-1)
            qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], -1)
            qw2 = qw2.reshape(qw.shape)
            qw = qw * cos_pos + qw2 * sin_pos
            kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], -1)
            kw2 = kw2.reshape(kw.shape)
            kw = kw * cos_pos + kw2 * sin_pos
        # logits:(batch_size, ent_type_size, seq_len, seq_len)
        logits = torch.einsum("bmhd,bnhd->bhmn", qw, kw)

        # padding mask
        pad_mask = attention_mask.unsqueeze(1).unsqueeze(1).expand(batch_size, self.ent_type_size, seq_len, seq_len)
        logits = logits * pad_mask - (1 - pad_mask) * 1e12

        # 排除下三角
        mask = torch.tril(torch.ones_like(logits), -1)
        logits = logits - mask * 1e12

        return logits / self.inner_dim ** 0.5


class SinusoidalPositionEmbedding(nn.Module):
    """定义Sin-Cos位置Embedding
    """

    def __init__(
            self, output_dim, merge_mode="add", custom_position_ids=False):
        super(SinusoidalPositionEmbedding, self).__init__()
        self.output_dim = output_dim
        self.merge_mode = merge_mode
        self.custom_position_ids = custom_position_ids

    def forward(self, inputs):
        if self.custom_position_ids:
            seq_len = inputs.shape[1]
            inputs, position_ids = inputs
            position_ids = position_ids.type(torch.float)
        else:
            input_shape = inputs.shape
            batch_size, seq_len = input_shape[0], input_shape[1]
            position_ids = torch.arange(seq_len).type(torch.float)[None]
        indices = torch.arange(self.output_dim // 2).type(torch.float)
        indices = torch.pow(10000.0, -2 * indices / self.output_dim)
        embeddings = torch.einsum("bn,d->bnd", position_ids, indices)
        embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
        embeddings = torch.reshape(embeddings, (-1, seq_len, self.output_dim))
        if self.merge_mode == "add":
            return inputs + embeddings.to(inputs.device)
        elif self.merge_mode == "mul":
            return inputs * (embeddings + 1.0).to(inputs.device)
        elif self.merge_mode == "zero":
            return embeddings.to(inputs.device)


def multilabel_categorical_crossentropy(y_pred, y_true):
    y_pred = (1 - 2 * y_true) * y_pred  # -1 -> pos classes, 1 -> neg classes
    y_pred_neg = y_pred - y_true * 1e12  # mask the pred outputs of pos classes
    y_pred_pos = y_pred - (1 - y_true) * 1e12  # mask the pred outputs of neg classes
    zeros = torch.zeros_like(y_pred[..., :1])
    y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
    y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
    neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
    pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
    # print(y_pred, y_true, pos_loss)
    return (neg_loss + pos_loss).mean()


def multilabel_categorical_crossentropy2(y_pred, y_true):
    y_pred = (1 - 2 * y_true) * y_pred  # -1 -> pos classes, 1 -> neg classes
    y_pred_neg = y_pred.clone()
    y_pred_pos = y_pred.clone()
    y_pred_neg[y_true>0] -= float("inf")
    y_pred_pos[y_true<1] -= float("inf")
    # y_pred_neg = y_pred - y_true * float("inf")  # mask the pred outputs of pos classes
    # y_pred_pos = y_pred - (1 - y_true) * float("inf")  # mask the pred outputs of neg classes
    zeros = torch.zeros_like(y_pred[..., :1])
    y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
    y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
    neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
    pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
    # print(y_pred, y_true, pos_loss)
    return (neg_loss + pos_loss).mean()

@dataclass
class GlobalPointerOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    topk_probs: torch.FloatTensor = None
    topk_indices: torch.IntTensor = None



class BertForEffiGlobalPointer(BertPreTrainedModel):
    def __init__(self, config):
        # encodr: RoBerta-Large as encoder
        # inner_dim: 64
        # ent_type_size: ent_cls_num
        super().__init__(config)
        self.bert = BertModel(config)
        self.ent_type_size = config.ent_type_size
        self.inner_dim = config.inner_dim
        self.hidden_size = config.hidden_size
        self.RoPE = config.RoPE

        self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
        self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2)  # 原版的dense2是(inner_dim * 2, ent_type_size * 2)

    def sequence_masking(self, x, mask, value="-inf", axis=None):
        if mask is None:
            return x
        else:
            if value == "-inf":
                value = -1e12
            elif value == "inf":
                value = 1e12
            assert axis > 0, "axis must be greater than 0"
            for _ in range(axis - 1):
                mask = torch.unsqueeze(mask, 1)
            for _ in range(x.ndim - mask.ndim):
                mask = torch.unsqueeze(mask, mask.ndim)
            return x * mask + value * (1 - mask)

    def add_mask_tril(self, logits, mask):
        if mask.dtype != logits.dtype:
            mask = mask.type(logits.dtype)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
        # 排除下三角
        mask = torch.tril(torch.ones_like(logits), diagonal=-1)
        logits = logits - mask * 1e12
        return logits

    def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
        # with torch.no_grad():
        context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
        last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
        outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
        qw, kw = outputs[..., ::2], outputs[..., 1::2]  # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
        batch_size = input_ids.shape[0]
        if self.RoPE:
            pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
            cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
            sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
            qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
            qw2 = torch.reshape(qw2, qw.shape)
            qw = qw * cos_pos + qw2 * sin_pos
            kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
            kw2 = torch.reshape(kw2, kw.shape)
            kw = kw * cos_pos + kw2 * sin_pos
        logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
        bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
        logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None]  # logits[:, None] 增加一个维度
        # logit_mask = self.add_mask_tril(logits, mask=attention_mask)
        loss = None

        mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
        # mask = torch.where(mask > 0, 0.0, 1)
        if labels is not None:
            y_pred = logits - (1-mask.unsqueeze(1))*1e12
            y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
            y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
            loss = multilabel_categorical_crossentropy(y_pred, y_true)

        with torch.no_grad():
            prob = torch.sigmoid(logits) * mask.unsqueeze(1)
            topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)


        return GlobalPointerOutput(
            loss=loss,
            topk_probs=topk.values,
            topk_indices=topk.indices
        )



class RobertaForEffiGlobalPointer(RobertaPreTrainedModel):
    def __init__(self, config):
        # encodr: RoBerta-Large as encoder
        # inner_dim: 64
        # ent_type_size: ent_cls_num
        super().__init__(config)
        self.roberta = RobertaModel(config)
        self.ent_type_size = config.ent_type_size
        self.inner_dim = config.inner_dim
        self.hidden_size = config.hidden_size
        self.RoPE = config.RoPE

        self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
        self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2)  # 原版的dense2是(inner_dim * 2, ent_type_size * 2)

    def sequence_masking(self, x, mask, value="-inf", axis=None):
        if mask is None:
            return x
        else:
            if value == "-inf":
                value = -1e12
            elif value == "inf":
                value = 1e12
            assert axis > 0, "axis must be greater than 0"
            for _ in range(axis - 1):
                mask = torch.unsqueeze(mask, 1)
            for _ in range(x.ndim - mask.ndim):
                mask = torch.unsqueeze(mask, mask.ndim)
            return x * mask + value * (1 - mask)

    def add_mask_tril(self, logits, mask):
        if mask.dtype != logits.dtype:
            mask = mask.type(logits.dtype)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
        # 排除下三角
        mask = torch.tril(torch.ones_like(logits), diagonal=-1)
        logits = logits - mask * 1e12
        return logits

    def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
        # with torch.no_grad():
        context_outputs = self.roberta(input_ids, attention_mask, token_type_ids)
        last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
        outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
        qw, kw = outputs[..., ::2], outputs[..., 1::2]  # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
        batch_size = input_ids.shape[0]
        if self.RoPE:
            pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
            cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
            sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
            qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
            qw2 = torch.reshape(qw2, qw.shape)
            qw = qw * cos_pos + qw2 * sin_pos
            kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
            kw2 = torch.reshape(kw2, kw.shape)
            kw = kw * cos_pos + kw2 * sin_pos
        logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
        bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
        logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None]  # logits[:, None] 增加一个维度
        # logit_mask = self.add_mask_tril(logits, mask=attention_mask)
        loss = None

        mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
        # mask = torch.where(mask > 0, 0.0, 1)
        if labels is not None:
            y_pred = logits - (1-mask.unsqueeze(1))*1e12
            y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
            y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
            loss = multilabel_categorical_crossentropy(y_pred, y_true)

        with torch.no_grad():
            prob = torch.sigmoid(logits) * mask.unsqueeze(1)
            topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)


        return GlobalPointerOutput(
            loss=loss,
            topk_probs=topk.values,
            topk_indices=topk.indices
        )


class RoformerForEffiGlobalPointer(RoFormerPreTrainedModel):
    def __init__(self, config):
        # encodr: RoBerta-Large as encoder
        # inner_dim: 64
        # ent_type_size: ent_cls_num
        super().__init__(config)
        self.roformer = RoFormerModel(config)
        self.ent_type_size = config.ent_type_size
        self.inner_dim = config.inner_dim
        self.hidden_size = config.hidden_size
        self.RoPE = config.RoPE

        self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
        self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2)  # 原版的dense2是(inner_dim * 2, ent_type_size * 2)

    def sequence_masking(self, x, mask, value="-inf", axis=None):
        if mask is None:
            return x
        else:
            if value == "-inf":
                value = -1e12
            elif value == "inf":
                value = 1e12
            assert axis > 0, "axis must be greater than 0"
            for _ in range(axis - 1):
                mask = torch.unsqueeze(mask, 1)
            for _ in range(x.ndim - mask.ndim):
                mask = torch.unsqueeze(mask, mask.ndim)
            return x * mask + value * (1 - mask)

    def add_mask_tril(self, logits, mask):
        if mask.dtype != logits.dtype:
            mask = mask.type(logits.dtype)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
        # 排除下三角
        mask = torch.tril(torch.ones_like(logits), diagonal=-1)
        logits = logits - mask * 1e12
        return logits

    def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
        # with torch.no_grad():
        context_outputs = self.roformer(input_ids, attention_mask, token_type_ids)
        last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
        outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
        qw, kw = outputs[..., ::2], outputs[..., 1::2]  # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
        batch_size = input_ids.shape[0]
        if self.RoPE:
            pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
            cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
            sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
            qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
            qw2 = torch.reshape(qw2, qw.shape)
            qw = qw * cos_pos + qw2 * sin_pos
            kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
            kw2 = torch.reshape(kw2, kw.shape)
            kw = kw * cos_pos + kw2 * sin_pos
        logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
        bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
        logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None]  # logits[:, None] 增加一个维度
        # logit_mask = self.add_mask_tril(logits, mask=attention_mask)
        loss = None

        mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
        # mask = torch.where(mask > 0, 0.0, 1)
        if labels is not None:
            y_pred = logits - (1-mask.unsqueeze(1))*1e12
            y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
            y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
            loss = multilabel_categorical_crossentropy(y_pred, y_true)

        with torch.no_grad():
            prob = torch.sigmoid(logits) * mask.unsqueeze(1)
            topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)


        return GlobalPointerOutput(
            loss=loss,
            topk_probs=topk.values,
            topk_indices=topk.indices
        )

class MegatronForEffiGlobalPointer(MegatronBertPreTrainedModel):
    def __init__(self, config):
        # encodr: RoBerta-Large as encoder
        # inner_dim: 64
        # ent_type_size: ent_cls_num
        super().__init__(config)
        self.bert = MegatronBertModel(config)
        self.ent_type_size = config.ent_type_size
        self.inner_dim = config.inner_dim
        self.hidden_size = config.hidden_size
        self.RoPE = config.RoPE

        self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
        self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2)  # 原版的dense2是(inner_dim * 2, ent_type_size * 2)

    def sequence_masking(self, x, mask, value="-inf", axis=None):
        if mask is None:
            return x
        else:
            if value == "-inf":
                value = -1e12
            elif value == "inf":
                value = 1e12
            assert axis > 0, "axis must be greater than 0"
            for _ in range(axis - 1):
                mask = torch.unsqueeze(mask, 1)
            for _ in range(x.ndim - mask.ndim):
                mask = torch.unsqueeze(mask, mask.ndim)
            return x * mask + value * (1 - mask)

    def add_mask_tril(self, logits, mask):
        if mask.dtype != logits.dtype:
            mask = mask.type(logits.dtype)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
        logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
        # 排除下三角
        mask = torch.tril(torch.ones_like(logits), diagonal=-1)
        logits = logits - mask * 1e12
        return logits

    def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
        # with torch.no_grad():
        context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
        last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
        outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
        qw, kw = outputs[..., ::2], outputs[..., 1::2]  # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
        batch_size = input_ids.shape[0]
        if self.RoPE:
            pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
            cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
            sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
            qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
            qw2 = torch.reshape(qw2, qw.shape)
            qw = qw * cos_pos + qw2 * sin_pos
            kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
            kw2 = torch.reshape(kw2, kw.shape)
            kw = kw * cos_pos + kw2 * sin_pos
        logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
        bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
        logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None]  # logits[:, None] 增加一个维度
        # logit_mask = self.add_mask_tril(logits, mask=attention_mask)
        loss = None

        mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
        # mask = torch.where(mask > 0, 0.0, 1)
        if labels is not None:
            y_pred = logits - (1-mask.unsqueeze(1))*1e12
            y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
            y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
            loss = multilabel_categorical_crossentropy(y_pred, y_true)

        with torch.no_grad():
            prob = torch.sigmoid(logits) * mask.unsqueeze(1)
            topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)


        return GlobalPointerOutput(
            loss=loss,
            topk_probs=topk.values,
            topk_indices=topk.indices
        )