# -*- coding: utf-8 -*- # @Time : 2022/03/23 15:25 # @Author : Jianing Wang # @Email : lygwjn@gmail.com # @File : TripletLoss.py # !/usr/bin/env python # coding=utf-8 from enum import Enum import torch from torch import nn, Tensor import torch.nn.functional as F from transformers.models.bert.modeling_bert import BertModel from transformers import BertTokenizer, BertConfig class TripletDistanceMetric(Enum): """ The metric for the triplet loss """ COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0). Margin is an important hyperparameter and needs to be tuned respectively. @:param distance_metric: The distance metric function @:param triplet_margin: (float) The margin distance Input example of forward function: rep_anchor: [[0.2, -0.1, ..., 0.6], [0.2, -0.1, ..., 0.6], ..., [0.2, -0.1, ..., 0.6]] rep_candidate: [[0.3, 0.1, ...m -0.3], [-0.8, 1.2, ..., 0.7], ..., [-0.9, 0.1, ..., 0.4]] label: [0, 1, ..., 1] Return example of forward function: 0.015 (averged) 2.672 (sum) """ def __init__(self, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 0.5): super(TripletLoss, self).__init__() self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, rep_anchor, rep_positive, rep_negative): # rep_anchor: [batch_size, hidden_dim] denotes the representations of anchors # rep_positive: [batch_size, hidden_dim] denotes the representations of positive, sometimes, it canbe dropout # rep_negative: [batch_size, hidden_dim] denotes the representations of negative # label: [batch_size, hidden_dim] denotes the label of each anchor - candidate pair distance_pos = self.distance_metric(rep_anchor, rep_positive) distance_neg = self.distance_metric(rep_anchor, rep_negative) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() if __name__ == "__main__": # configure for huggingface pre-trained language models config = BertConfig.from_pretrained("bert-base-cased") # tokenizer for huggingface pre-trained language models tokenizer = BertTokenizer.from_pretrained("bert-base-cased") # pytorch_model.bin for huggingface pre-trained language models model = BertModel.from_pretrained("bert-base-cased") # obtain two batch of examples, each corresponding example is a pair anchor_example = ["I am an anchor, which is the source example sampled from corpora."] # anchor sentence positive_example = [ "I am an anchor, which is the source example.", "I am the source example sampled from corpora." ] # positive, which randomly dropout or noise from anchor negative_example = [ "It is different with the anchor.", "My name is Jianing Wang, please give me some stars, thank you!" ] # negative, which randomly sampled from corpora # convert each example for feature # {"input_ids": xxx, "attention_mask": xxx, "token_tuype_ids": xxx} anchor_feature = tokenizer(anchor_example, add_special_tokens=True, padding=True) positive_feature = tokenizer(positive_example, add_special_tokens=True, padding=True) negative_feature = tokenizer(negative_example, add_special_tokens=True, padding=True) # padding and convert to feature batch max_seq_lem = 24 anchor_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in anchor_feature.items()} positive_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in positive_feature.items()} negative_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in negative_feature.items()} # obtain sentence embedding by averaged pooling rep_anchor = model(**anchor_feature)[0] # [1, max_seq_len, hidden_dim] rep_positive = model(**positive_feature)[0] # [batch_size, max_seq_len, hidden_dim] rep_negative = model(**negative_feature)[0] # [batch_size, max_seq_len, hidden_dim] # repeat rep_anchor = torch.mean(rep_anchor, -1) # [1, hidden_dim] rep_positive = torch.mean(rep_positive, -1) # [batch_size, hidden_dim] rep_negative = torch.mean(rep_negative, -1) # [batch_size, hidden_dim] # obtain contrastive loss loss_fn = TripletLoss() loss = loss_fn(rep_anchor=rep_anchor, rep_positive=rep_positive, rep_negative=rep_negative) print(loss) # tensor(0.5001, grad_fn=)