Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import aiohttp
|
|
7 |
|
8 |
LLM_API = os.environ.get("LLM_API")
|
9 |
LLM_URL = os.environ.get("LLM_URL")
|
10 |
-
USER_ID = "HuggingFace Space"
|
11 |
|
12 |
async def send_chat_message(LLM_URL, LLM_API, user_input, file_id):
|
13 |
payload = {
|
@@ -16,48 +16,32 @@ async def send_chat_message(LLM_URL, LLM_API, user_input, file_id):
|
|
16 |
"response_mode": "streaming",
|
17 |
"conversation_id": "",
|
18 |
"user": USER_ID,
|
19 |
-
"files": [
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
}
|
25 |
-
]
|
26 |
}
|
27 |
-
|
28 |
async with aiohttp.ClientSession() as session:
|
29 |
async with session.post(
|
30 |
f"{LLM_URL}/chat-messages",
|
31 |
headers={"Authorization": f"Bearer {LLM_API}"},
|
32 |
json=payload
|
33 |
) as response:
|
34 |
-
print("Request URL:", f"{LLM_URL}/chat-messages")
|
35 |
-
print("Response status code:", response.status)
|
36 |
-
|
37 |
if response.status == 404:
|
38 |
return "Error: Endpoint not found (404)"
|
39 |
-
|
40 |
last_thought = None
|
41 |
async for line in response.content:
|
42 |
if line:
|
43 |
try:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if line_data.get("data", {}).get("outputs", {}).get("answer"):
|
50 |
-
last_thought = line_data["data"]["outputs"]["answer"]
|
51 |
-
break # 找到答案後退出迴圈
|
52 |
-
except (IndexError, json.JSONDecodeError) as e:
|
53 |
-
print("Error parsing line:", e) # Debug: 輸出解析錯誤訊息
|
54 |
continue
|
55 |
-
|
56 |
-
if last_thought:
|
57 |
-
return last_thought.strip()
|
58 |
-
else:
|
59 |
-
return "Error: No thought or answer found in the response"
|
60 |
-
|
61 |
|
62 |
async def upload_file(LLM_URL, LLM_API, file_path, user_id):
|
63 |
if not os.path.exists(file_path):
|
@@ -68,43 +52,30 @@ async def upload_file(LLM_URL, LLM_API, file_path, user_id):
|
|
68 |
form_data = aiohttp.FormData()
|
69 |
form_data.add_field('file', f, filename=file_path, content_type=mime_type)
|
70 |
form_data.add_field('user', user_id)
|
71 |
-
|
72 |
async with session.post(
|
73 |
f"{LLM_URL}/files/upload",
|
74 |
headers={"Authorization": f"Bearer {LLM_API}"},
|
75 |
data=form_data
|
76 |
) as response:
|
77 |
-
print("Upload response status code:", response.status) # Debug information
|
78 |
if response.status == 404:
|
79 |
-
return "Error:
|
80 |
-
|
81 |
-
response_text = await response.text()
|
82 |
-
print("Raw upload response text:", response_text) # Debug information
|
83 |
-
|
84 |
try:
|
85 |
-
|
86 |
-
|
87 |
-
if file_id:
|
88 |
-
return response_json
|
89 |
-
else:
|
90 |
-
return "Error: No file ID returned in upload response"
|
91 |
except json.JSONDecodeError:
|
92 |
-
return "Error:
|
93 |
|
94 |
async def handle_input(file_path, user_input):
|
95 |
upload_response = await upload_file(LLM_URL, LLM_API, file_path, USER_ID)
|
96 |
-
print("Upload response:", upload_response) # Debug information
|
97 |
if isinstance(upload_response, str) and "Error" in upload_response:
|
98 |
return upload_response
|
99 |
-
file_id = upload_response.get("id")
|
100 |
if not file_id:
|
101 |
-
return "Error: No file ID
|
102 |
-
|
103 |
-
chat_response = await send_chat_message(LLM_URL, LLM_API, user_input, file_id)
|
104 |
-
print("Chat response:", chat_response) # Debug information
|
105 |
-
return chat_response
|
106 |
|
107 |
-
# 定義界面標題和描述
|
108 |
TITLE = """<h1>Multimodal RAG Playground 💬 輸入工地照片,生成工地場景及相關法規和缺失描述</h1>"""
|
109 |
SUBTITLE = """<h2><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D.</a> | <a href='https://blog.twman.org/p/deeplearning101.html' target='_blank'>手把手帶你一起踩AI坑</a><br></h2>"""
|
110 |
LINKS = """
|
@@ -123,12 +94,6 @@ LINKS = """
|
|
123 |
<a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>
|
124 |
"""
|
125 |
|
126 |
-
# Define Gradio interface
|
127 |
-
file_input = gr.Image(label='圖片上傳', type='filepath')
|
128 |
-
user_input = gr.Textbox(label='輸入問題描述', value="分析一下這張工地場景照片", placeholder="請輸入您的問題描述...")
|
129 |
-
output_text = gr.Textbox(label="結果輸出", lines=4)
|
130 |
-
|
131 |
-
# # 範例資料
|
132 |
examples = [
|
133 |
['DEMO/DEMO_0004.jpg', '0004-51'],
|
134 |
['DEMO/DEMO_0005.jpg', '0005-92'],
|
@@ -137,16 +102,30 @@ examples = [
|
|
137 |
['DEMO/DEMO_0011.jpg', '0011-108'],
|
138 |
]
|
139 |
|
140 |
-
with gr.Blocks() as
|
141 |
gr.HTML(TITLE)
|
142 |
gr.HTML(SUBTITLE)
|
143 |
gr.HTML(LINKS)
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
fn=handle_input,
|
146 |
-
inputs=[
|
147 |
-
outputs=
|
|
|
|
|
|
|
148 |
examples=examples,
|
149 |
-
|
|
|
|
|
150 |
)
|
151 |
|
152 |
-
|
|
|
7 |
|
8 |
LLM_API = os.environ.get("LLM_API")
|
9 |
LLM_URL = os.environ.get("LLM_URL")
|
10 |
+
USER_ID = "HuggingFace Space"
|
11 |
|
12 |
async def send_chat_message(LLM_URL, LLM_API, user_input, file_id):
|
13 |
payload = {
|
|
|
16 |
"response_mode": "streaming",
|
17 |
"conversation_id": "",
|
18 |
"user": USER_ID,
|
19 |
+
"files": [{
|
20 |
+
"type": "image",
|
21 |
+
"transfer_method": "local_file",
|
22 |
+
"upload_file_id": file_id
|
23 |
+
}]
|
|
|
|
|
24 |
}
|
25 |
+
|
26 |
async with aiohttp.ClientSession() as session:
|
27 |
async with session.post(
|
28 |
f"{LLM_URL}/chat-messages",
|
29 |
headers={"Authorization": f"Bearer {LLM_API}"},
|
30 |
json=payload
|
31 |
) as response:
|
|
|
|
|
|
|
32 |
if response.status == 404:
|
33 |
return "Error: Endpoint not found (404)"
|
|
|
34 |
last_thought = None
|
35 |
async for line in response.content:
|
36 |
if line:
|
37 |
try:
|
38 |
+
data = json.loads(line.decode("utf-8").replace("data: ", ""))
|
39 |
+
if data.get("data", {}).get("outputs", {}).get("answer"):
|
40 |
+
last_thought = data["data"]["outputs"]["answer"]
|
41 |
+
break
|
42 |
+
except Exception:
|
|
|
|
|
|
|
|
|
|
|
43 |
continue
|
44 |
+
return last_thought.strip() if last_thought else "Error: No answer found."
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
async def upload_file(LLM_URL, LLM_API, file_path, user_id):
|
47 |
if not os.path.exists(file_path):
|
|
|
52 |
form_data = aiohttp.FormData()
|
53 |
form_data.add_field('file', f, filename=file_path, content_type=mime_type)
|
54 |
form_data.add_field('user', user_id)
|
|
|
55 |
async with session.post(
|
56 |
f"{LLM_URL}/files/upload",
|
57 |
headers={"Authorization": f"Bearer {LLM_API}"},
|
58 |
data=form_data
|
59 |
) as response:
|
|
|
60 |
if response.status == 404:
|
61 |
+
return "Error: Upload endpoint not found"
|
62 |
+
text = await response.text()
|
|
|
|
|
|
|
63 |
try:
|
64 |
+
json_resp = json.loads(text)
|
65 |
+
return json_resp
|
|
|
|
|
|
|
|
|
66 |
except json.JSONDecodeError:
|
67 |
+
return "Error: Upload returned invalid JSON"
|
68 |
|
69 |
async def handle_input(file_path, user_input):
|
70 |
upload_response = await upload_file(LLM_URL, LLM_API, file_path, USER_ID)
|
|
|
71 |
if isinstance(upload_response, str) and "Error" in upload_response:
|
72 |
return upload_response
|
73 |
+
file_id = upload_response.get("id")
|
74 |
if not file_id:
|
75 |
+
return "Error: No file ID from upload"
|
76 |
+
return await send_chat_message(LLM_URL, LLM_API, user_input, file_id)
|
|
|
|
|
|
|
77 |
|
78 |
+
# --- Gradio UI 設定 --- 定義界面標題和描述
|
79 |
TITLE = """<h1>Multimodal RAG Playground 💬 輸入工地照片,生成工地場景及相關法規和缺失描述</h1>"""
|
80 |
SUBTITLE = """<h2><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D.</a> | <a href='https://blog.twman.org/p/deeplearning101.html' target='_blank'>手把手帶你一起踩AI坑</a><br></h2>"""
|
81 |
LINKS = """
|
|
|
94 |
<a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>
|
95 |
"""
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
examples = [
|
98 |
['DEMO/DEMO_0004.jpg', '0004-51'],
|
99 |
['DEMO/DEMO_0005.jpg', '0005-92'],
|
|
|
102 |
['DEMO/DEMO_0011.jpg', '0011-108'],
|
103 |
]
|
104 |
|
105 |
+
with gr.Blocks() as demo:
|
106 |
gr.HTML(TITLE)
|
107 |
gr.HTML(SUBTITLE)
|
108 |
gr.HTML(LINKS)
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
image_input = gr.Image(label='📷 上傳照片', type='filepath')
|
112 |
+
text_input = gr.Textbox(label='💬 輸入問題描述', value="分析一下這張工地場景照片")
|
113 |
+
|
114 |
+
output_box = gr.Textbox(label="📝 回應結果", lines=8)
|
115 |
+
|
116 |
+
submit_button = gr.Button("🚀 開始分析")
|
117 |
+
|
118 |
+
submit_button.click(
|
119 |
fn=handle_input,
|
120 |
+
inputs=[image_input, text_input],
|
121 |
+
outputs=[output_box]
|
122 |
+
)
|
123 |
+
|
124 |
+
gr.Examples(
|
125 |
examples=examples,
|
126 |
+
inputs=[image_input, text_input],
|
127 |
+
outputs=[output_box],
|
128 |
+
label="點擊以下範例自動帶入"
|
129 |
)
|
130 |
|
131 |
+
demo.launch()
|