|
import os |
|
import time |
|
import json |
|
import random |
|
import gradio as gr |
|
import torch |
|
import torchaudio |
|
import numpy as np |
|
from scipy.io import wavfile |
|
import scipy.signal as sps |
|
from denoiser.demucs import Demucs |
|
from pydub import AudioSegment |
|
|
|
modelpath = './denoiser/master64.th' |
|
|
|
def transcribe(file_upload, microphone): |
|
file = microphone if microphone is not None else file_upload |
|
model = Demucs(hidden=64) |
|
state_dict = torch.load(modelpath, map_location='cpu') |
|
model.load_state_dict(state_dict) |
|
demucs = model |
|
x, sr = torchaudio.load(file) |
|
out = demucs(x[None])[0] |
|
out = out / max(out.abs().max().item(), 1) |
|
torchaudio.save('enhanced.wav', out, sr) |
|
enhanced = AudioSegment.from_wav('enhanced.wav') |
|
enhanced.export('enhanced.wav', format="wav", bitrate="256k") |
|
return "enhanced.wav" |
|
|
|
demo = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="語音質檢麥克風實時錄音"), |
|
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="語音質檢原始音檔"), |
|
], |
|
|
|
outputs=gr.outputs.Audio(type="filepath", label="Output"), |
|
title="<p style='text-align: center'><a href='https://www.twman.org/AI' target='_blank'>語音質檢噪音去除 (語音增強):Meta Denoiser</a>", |
|
description=( |
|
"為了提升語音識別的效果,可以在識別前先進行噪音去除" |
|
), |
|
allow_flagging="never", |
|
examples=[ |
|
"exampleAudio/15s_2020-03-27_sep1.wav", |
|
"exampleAudio/13s_2020-03-27_sep2.wav", |
|
"exampleAudio/30s_2020-04-23_sep1.wav", |
|
"exampleAudio/15s_2020-04-23_sep2.wav", |
|
], |
|
) |
|
|
|
demo.launch(enable_queue=True) |