import os import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub # set this key as an environment variable HUGGINGFACEHUB_API_TOKEN=os.environ["HUGGINGFACEHUB_API_TOKEN"] def get_pdf_text(pdf_docs : list) -> str: text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text:str) ->list: text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks : list) -> FAISS: model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" encode_kwargs = { "normalize_embeddings": True } # set True to compute cosine similarity embeddings = HuggingFaceBgeEmbeddings( model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} ) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain: # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") llm = HuggingFaceHub( repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF" model_kwargs={"temperature": 0.5, "max_length": 1048}, ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question:str): response = st.session_state.conversation({"question": user_question}) st.session_state.chat_history = response["chat_history"] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(" Usuario: " + message.content) else: st.write("🤖 ChatBot: " + message.content) def main(): st.set_page_config( page_title="Chat with your Document!", page_icon=":books:", ) #st.markdown("# Chat with a Bot") #st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with your Document! 🤖") user_question = st.text_input("Ask a question related to your document:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True ) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain(vectorstore) if __name__ == "__main__": main()