File size: 6,336 Bytes
7ef595f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import streamlit as st
from get_pat_data import Patent_DataCreator
from datasets import load_dataset
import re
import boto3
import time
import requests
from bs4 import BeautifulSoup
import pandas as pd
import pinecone
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
from keybert import KeyBERT
from keyphrase_vectorizers import KeyphraseCountVectorizer
kw_model=KeyBERT(model='AI-Growth-Lab/PatentSBERTa')
s3 = boto3.resource('s3',
region_name='us-east-1',
aws_access_key_id='AKIA3VGKPNV5NSVBJWEE',
aws_secret_access_key='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')
INDEX_API_KEY='b33ddf5d-5b1a-4d0e-9a3f-572008563791'
INDEX_DIMENSION=768
INDEX_ENV='gcp-starter'
INDEX_NAME='wiki-index'
# getting Pinecone credntials
# INDEX_DIMENSION=768
# logging.info(f"Index dimensions are:{INDEX_DIMENSION}")
pinecone.init(api_key=INDEX_API_KEY, environment=INDEX_ENV)
index = pinecone.Index(index_name=INDEX_NAME )
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base')
model = AutoModel.from_pretrained('intfloat/e5-base')
# data=pd.read_csv("wikicat_all.csv")
def get_pat_text(pnkc_no):
pat_data=Patent_DataCreator(pnkc_no)
bib_key,pnkc_without_kindcode,pnkc_suffix=pat_data.get_bib_key()
bib_bucket=pat_data.get_bib_bucket()
bib_data=pat_data.get_bib_data(s3)
claims_data=pat_data.get_claims_data(s3)
desc_data=pat_data.get_desc_data(s3)
df1,df2,df3=pat_data.get_patent_dfs()
dataset=pat_data.get_patent_dataset()
Title=dataset[1]['Title'][0]
Abstract=dataset[1]['Abstract'][0]
Claims=dataset[1]['Claims'][0]
Description=dataset[1]['Description'][0]
# SOI=dataset[1]['SOI'][0]
pat_text= Title+Abstract
return pat_text
# Function to fetch categories, title, and related text from a Wikipedia page
def fetch_wikipedia_data(article_title):
url = f"https://en.wikipedia.org/wiki/{article_title.replace(' ', '_')}"
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
# Find the categories section at the bottom of the page
categories_section = soup.find("div", {"class": "mw-normal-catlinks"})
if categories_section:
# Extract individual categories
categories = [cat.text for cat in categories_section.find("ul").find_all("li")]
# Extract the title
title = article_title
return {"title": title, "categories": categories}
return None
def get_wiki_category_aprch_1(pat_text):
print(pat_text)
keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=15,vectorizer=KeyphraseCountVectorizer())
titles=[]
for i in range(len(keywords)):
title=keywords[i][0]
titles.append(title)
data = []
for i in titles:
results = fetch_wikipedia_data(i)
data.append(results)
cats=[]
for i in range(len(data)):
if data[i] is not None:
cat=data[i]['categories']
cats.append(cat)
result=[j for i in cats for j in i]
res = [i for n, i in enumerate(result) if i not in result[:n]]
return titles,res
# def get_wiki_category_aprch_2(pat_text):
# print(pat_text)
# keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=10,vectorizer=KeyphraseCountVectorizer())
# titles=[]
# for i in range(len(keywords)):
# title=keywords[i][0]
# titles.append(title)
# data = []
# for i in titles:
# results = fetch_wikipedia_data(i)
# data.append(results)
# cats=[]
# for i in range(len(data)):
# if data[i] is not None:
# cat=data[i]['categories']
# cats.append(cat)
# result=[j for i in cats for j in i]
# res = [i for n, i in enumerate(result) if i not in result[:n]]
# return res
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def get_wiki_category(pat_text):
# print(pat_text)
keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=3,vectorizer=KeyphraseCountVectorizer())
titles=[]
for i in range(len(keywords)):
title=keywords[i][0]
titles.append(title)
batch_dict = tokenizer(titles, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
values = embeddings.tolist()
catgories_list = []
for value in values:
try:
response = index.query(vector=value,top_k=3,include_metadata=True)
except:
pinecone.init(api_key='b33ddf5d-5b1a-4d0e-9a3f-572008563791',environment='gcp-starter')
index = pinecone.Index("wiki-index")
response = index.query(vector=value,top_k=5,include_metadata=True)
catgories = response['matches'][0]['metadata']['categories']
catgories_list.append(catgories.split(','))
flatList = [element for innerList in catgories_list for element in innerList]
new_list = [item.replace("'", '') for item in flatList]
a_list = [s.strip() for s in new_list]
test_list = list(set(a_list))
# result=[j for i in flatList for j in i]
# res = [i for n, i in enumerate(result) if i not in result[:n]]
return test_list
def main():
st.title('Wiki Classifier')
pnkc_no = st.text_input("Enter a pnkc number:")
pat_text = st.text_area("Enter a text paragraph:")
if st.button('Get Wiki categories'):
if pnkc_no:
text = get_pat_text(pnkc_no)
else:
text=pat_text
st.write("Predicting Wiki Categories for text:",text[:200])
start_time = time.time()
titles,wiki_categories=get_wiki_category_aprch_1(text)
end_time = time.time()
st.write({f"Wiki_titles for {pnkc_no} Text":titles})
st.write({f"Wiki_categories for {pnkc_no} Text":wiki_categories})
if __name__ == "__main__":
main()
|