File size: 6,336 Bytes
7ef595f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import streamlit as st
from get_pat_data import Patent_DataCreator
from datasets import load_dataset
import re
import boto3
import time
import requests
from bs4 import BeautifulSoup
import pandas as pd
import pinecone
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
from keybert import KeyBERT
from keyphrase_vectorizers import KeyphraseCountVectorizer
kw_model=KeyBERT(model='AI-Growth-Lab/PatentSBERTa')

s3 = boto3.resource('s3',
     region_name='us-east-1',
     aws_access_key_id='AKIA3VGKPNV5NSVBJWEE',
     aws_secret_access_key='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')

INDEX_API_KEY='b33ddf5d-5b1a-4d0e-9a3f-572008563791'
INDEX_DIMENSION=768
INDEX_ENV='gcp-starter'
INDEX_NAME='wiki-index'

# getting Pinecone credntials
# INDEX_DIMENSION=768
# logging.info(f"Index dimensions are:{INDEX_DIMENSION}")
pinecone.init(api_key=INDEX_API_KEY, environment=INDEX_ENV)
index = pinecone.Index(index_name=INDEX_NAME )

tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base')
model = AutoModel.from_pretrained('intfloat/e5-base')

# data=pd.read_csv("wikicat_all.csv")
         
def get_pat_text(pnkc_no):
    pat_data=Patent_DataCreator(pnkc_no)
    bib_key,pnkc_without_kindcode,pnkc_suffix=pat_data.get_bib_key()
    bib_bucket=pat_data.get_bib_bucket()
    bib_data=pat_data.get_bib_data(s3)
    claims_data=pat_data.get_claims_data(s3)
    desc_data=pat_data.get_desc_data(s3)
    df1,df2,df3=pat_data.get_patent_dfs()
    dataset=pat_data.get_patent_dataset()

    Title=dataset[1]['Title'][0]
    Abstract=dataset[1]['Abstract'][0]
    Claims=dataset[1]['Claims'][0]
    Description=dataset[1]['Description'][0]
    # SOI=dataset[1]['SOI'][0]

    pat_text= Title+Abstract
    return pat_text


# Function to fetch categories, title, and related text from a Wikipedia page
def fetch_wikipedia_data(article_title):
    url = f"https://en.wikipedia.org/wiki/{article_title.replace(' ', '_')}"

    response = requests.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.text, 'html.parser')

        # Find the categories section at the bottom of the page
        categories_section = soup.find("div", {"class": "mw-normal-catlinks"})

        if categories_section:
            # Extract individual categories
            categories = [cat.text for cat in categories_section.find("ul").find_all("li")]

            # Extract the title
            title = article_title

            return {"title": title, "categories": categories}

    return None

def get_wiki_category_aprch_1(pat_text):
    print(pat_text)
    keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=15,vectorizer=KeyphraseCountVectorizer())
    titles=[]
    for i in range(len(keywords)):
        title=keywords[i][0]
        titles.append(title)
    data = []
    for i in titles:
        results = fetch_wikipedia_data(i)
        data.append(results)
    cats=[]
    for i in range(len(data)):
        if data[i] is not None:
            cat=data[i]['categories']
            cats.append(cat)
    result=[j for i in cats for j in i]
    res = [i for n, i in enumerate(result) if i not in result[:n]]
    return titles,res

# def get_wiki_category_aprch_2(pat_text):
#     print(pat_text)
#     keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=10,vectorizer=KeyphraseCountVectorizer())
#     titles=[]
#     for i in range(len(keywords)):
#         title=keywords[i][0]
#         titles.append(title)
#     data = []
#     for i in titles:
#         results = fetch_wikipedia_data(i)
#         data.append(results)
#     cats=[]
#     for i in range(len(data)):
#         if data[i] is not None:
#             cat=data[i]['categories']
#             cats.append(cat)
#     result=[j for i in cats for j in i]
#     res = [i for n, i in enumerate(result) if i not in result[:n]]
#     return res

def average_pool(last_hidden_states: Tensor,
                attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
            
def get_wiki_category(pat_text):
    # print(pat_text)
    keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=3,vectorizer=KeyphraseCountVectorizer())
    titles=[]
    for i in range(len(keywords)):
        title=keywords[i][0]
        titles.append(title)

    batch_dict = tokenizer(titles, padding=True, truncation=True, return_tensors='pt')
    outputs = model(**batch_dict)
    embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
    embeddings = F.normalize(embeddings, p=2, dim=1)
    values = embeddings.tolist()

    catgories_list = []
    for value in values:
        try:
            response = index.query(vector=value,top_k=3,include_metadata=True)
        except:
            pinecone.init(api_key='b33ddf5d-5b1a-4d0e-9a3f-572008563791',environment='gcp-starter')
            index = pinecone.Index("wiki-index")
            response = index.query(vector=value,top_k=5,include_metadata=True)

        catgories = response['matches'][0]['metadata']['categories']
        catgories_list.append(catgories.split(','))
    flatList = [element for innerList in catgories_list for element in innerList]
    new_list = [item.replace("'", '') for item in flatList]
    a_list = [s.strip() for s in new_list]
    test_list = list(set(a_list))
    # result=[j for i in flatList for j in i]
    # res = [i for n, i in enumerate(result) if i not in result[:n]]
    return test_list

def main():
    st.title('Wiki Classifier')
    
    pnkc_no = st.text_input("Enter a pnkc number:")
    pat_text = st.text_area("Enter a text paragraph:")

    if st.button('Get Wiki categories'):

        if pnkc_no:
            text = get_pat_text(pnkc_no)
        else:
            text=pat_text

        st.write("Predicting Wiki Categories for text:",text[:200])
        start_time = time.time()
        titles,wiki_categories=get_wiki_category_aprch_1(text)
        end_time = time.time()
        st.write({f"Wiki_titles for {pnkc_no} Text":titles})
        st.write({f"Wiki_categories for {pnkc_no} Text":wiki_categories})
            
if __name__ == "__main__":
    main()