Spaces:
Paused
Paused
File size: 6,622 Bytes
cfc841a 75e2955 cfc841a 9ae0443 cfc841a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from fastapi import FastAPI
# from transformers import pipeline
from txtai.embeddings import Embeddings
from txtai.pipeline import Extractor
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from txtai.embeddings import Embeddings
from txtai.pipeline import Extractor
import pandas as pd
import sqlite3
import os
# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")
# app = FastAPI()
# pipe = pipeline("text2text-generation", model="google/flan-t5-small")
# @app.get("/generate")
# def generate(text: str):
# """
# Using the text2text-generation pipeline from `transformers`, generate text
# from the given input text. The model used is `google/flan-t5-small`, which
# can be found [here](https://huggingface.co/google/flan-t5-small).
# """
# output = pipe(text)
# return {"output": output[0]["generated_text"]}
def load_embeddings(
domain: str = "",
db_present: bool = True,
path: str = "sentence-transformers/all-MiniLM-L6-v2",
index_name: str = "index",
):
# Create embeddings model with content support
embeddings = Embeddings({"path": path, "content": True})
# if Vector DB is not present
if not db_present:
return embeddings
else:
if domain == "":
embeddings.load(index_name) # change this later
else:
print(3)
embeddings.load(f"{index_name}/{domain}")
return embeddings
def _check_if_db_exists(db_path: str) -> bool:
return os.path.exists(db_path)
def _text_splitter(doc):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
length_function=len,
)
return text_splitter.transform_documents(doc)
def _load_docs(path: str):
load_doc = WebBaseLoader(path).load()
doc = _text_splitter(load_doc)
return doc
def _stream(dataset, limit, index: int = 0):
for row in dataset:
yield (index, row.page_content, None)
index += 1
if index >= limit:
break
def _max_index_id(path):
db = sqlite3.connect(path)
table = "sections"
df = pd.read_sql_query(f"select * from {table}", db)
return {"max_index": df["indexid"].max()}
def _upsert_docs(doc, embeddings, vector_doc_path: str, db_present: bool):
print(vector_doc_path)
if db_present:
print(1)
max_index = _max_index_id(f"{vector_doc_path}/documents")
print(max_index)
embeddings.upsert(_stream(doc, 500, max_index["max_index"]))
print("Embeddings done!!")
embeddings.save(vector_doc_path)
print("Embeddings done - 1!!")
else:
print(2)
embeddings.index(_stream(doc, 500, 0))
embeddings.save(vector_doc_path)
max_index = _max_index_id(f"{vector_doc_path}/documents")
print(max_index)
# check
# max_index = _max_index_id(f"{vector_doc_path}/documents")
# print(max_index)
return max_index
@app.get("/index/{domain}/")
def get_domain_file_path(domain: str, file_path: str):
print(domain, file_path)
print(os.getcwd())
bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
print(bool_value)
if bool_value:
embeddings = load_embeddings(domain=domain, db_present=bool_value)
print(embeddings)
doc = _load_docs(file_path)
max_index = _upsert_docs(
doc=doc,
embeddings=embeddings,
vector_doc_path=f"{os.getcwd()}/index/{domain}",
db_present=bool_value,
)
# print("-------")
else:
embeddings = load_embeddings(domain=domain, db_present=bool_value)
doc = _load_docs(file_path)
max_index = _upsert_docs(
doc=doc,
embeddings=embeddings,
vector_doc_path=f"{os.getcwd()}/index/{domain}",
db_present=bool_value,
)
# print("Final - output : ", max_index)
return "Executed Successfully!!"
def _check_if_db_exists(db_path: str) -> bool:
return os.path.exists(db_path)
def _load_embeddings_from_db(
db_present: bool,
domain: str,
path: str = "sentence-transformers/all-MiniLM-L6-v2",
):
# Create embeddings model with content support
embeddings = Embeddings({"path": path, "content": True})
# if Vector DB is not present
if not db_present:
return embeddings
else:
if domain == "":
embeddings.load("index") # change this later
else:
print(3)
embeddings.load(f"{os.getcwd()}/index/{domain}")
return embeddings
def _prompt(question):
return f"""Answer the following question using only the context below. Say 'Could not find answer within the context' when the question can't be answered.
Question: {question}
Context: """
def _search(query, extractor, question=None):
# Default question to query if empty
if not question:
question = query
# template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
# Question: {question}
# Context: """
# prompt = PromptTemplate(template=template, input_variables=["question"])
# llm_chain = LLMChain(prompt=prompt, llm=extractor)
# return {"question": question, "answer": llm_chain.run(question)}
return extractor([("answer", query, _prompt(question), False)])[0][1]
@app.get("/rag")
def rag(domain: str, question: str):
db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
print(db_exists)
# if db_exists:
embeddings = _load_embeddings_from_db(db_exists, domain)
extractor = Extractor(similarity=embeddings, path="google/flan-t5-base")
# llm = HuggingFaceHub(
# repo_id="google/flan-t5-xxl",
# model_kwargs={"temperature": 1, "max_length": 1000000},
# )
# else:
answer = _search(question, extractor)
return {"question": question, "answer": answer}
'''
load embedding and models for extractor during start up
'''
# Create extractor instance
#extractor = Extractor(path="google/flan-t5-large")
#extractor = Extractor(embeddings, "TheBloke/Llama-2-7B-GGUF")
#extractor = Extractor(embeddings, "google/flan-t5-xl")
|