Spaces:
Paused
Paused
from fastapi import FastAPI | |
import os | |
import phoenix as px | |
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor | |
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain import HuggingFaceHub | |
from langchain.chains import RetrievalQA | |
from langchain.callbacks import StdOutCallbackHandler | |
#from langchain.retrievers import KNNRetriever | |
from langchain.storage import LocalFileStore | |
from langchain.embeddings import CacheBackedEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.document_loaders import WebBaseLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# from langchain import HuggingFaceHub | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from txtai.embeddings import Embeddings | |
# from txtai.pipeline import Extractor | |
# import pandas as pd | |
# import sqlite3 | |
# import os | |
# NOTE - we configure docs_url to serve the interactive Docs at the root path | |
# of the app. This way, we can use the docs as a landing page for the app on Spaces. | |
app = FastAPI(docs_url="/") | |
#phoenix setup | |
session = px.launch_app() | |
# If no exporter is specified, the tracer will export to the locally running Phoenix server | |
tracer = OpenInferenceTracer() | |
# If no tracer is specified, a tracer is constructed for you | |
LangChainInstrumentor(tracer).instrument() | |
print(session.url) | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" | |
# embedding cache | |
store = LocalFileStore("./cache/") | |
# define embedder | |
core_embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store) | |
# define llm | |
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) | |
#llm=HuggingFaceHub(repo_id="gpt2", model_kwargs={"temperature":1, "max_length":1000000}) | |
handler = StdOutCallbackHandler() | |
# set global variable | |
vectorstore = None | |
retriever = None | |
def initialize_vectorstore(): | |
webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/tredence-helped-a-global-retailer-providing-holistic-campaign-analytics-by-using-the-power-of-gcp").load() | |
webpage_chunks = _text_splitter(webpage_loader) | |
global vectorstore | |
global retriever | |
# store embeddings in vector store | |
vectorstore = FAISS.from_documents(webpage_chunks, embedder) | |
print("vector store initialized with sample doc") | |
# instantiate a retriever | |
retriever = vectorstore.as_retriever() | |
def _text_splitter(doc): | |
text_splitter = RecursiveCharacterTextSplitter( | |
#chunk_size=500, | |
chunk_overlap=50, | |
length_function=len, | |
) | |
return text_splitter.transform_documents(doc) | |
def _load_docs(path: str): | |
load_doc = WebBaseLoader(path).load() | |
doc = _text_splitter(load_doc) | |
return doc | |
def get_domain_file_path(file_path: str): | |
print("file_path " ,file_path) | |
webpage_loader = _load_docs(file_path) | |
webpage_chunks = _text_splitter(webpage_loader) | |
# store embeddings in vector store | |
vectorstore.add_documents(webpage_chunks) | |
return "document loaded to vector store successfully!!" | |
def _prompt(question): | |
return f"""Answer following question using only the context below. Say 'Could not find answer with provided context' when question can't be answered. | |
Question: {question} | |
Context: """ | |
def rag( question: str): | |
chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
retriever=retriever, | |
callbacks=[handler], | |
return_source_documents=True | |
) | |
#response = chain("how tredence brought good insight?") | |
response = chain(_prompt(question)) | |
return {"question": question, "answer": response['result']} | |
initialize_vectorstore() |