Spaces:
Paused
Paused
Upload 8 files
Browse filesswitch to langchain
- Index.py +85 -211
- requirements.txt +4 -6
Index.py
CHANGED
@@ -1,63 +1,80 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
# from transformers import pipeline
|
4 |
-
from txtai.embeddings import Embeddings
|
5 |
-
from txtai.pipeline import Extractor
|
6 |
from langchain.document_loaders import WebBaseLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
|
9 |
-
from langchain import HuggingFaceHub
|
10 |
-
from langchain.prompts import PromptTemplate
|
11 |
-
from langchain.chains import LLMChain
|
12 |
-
from txtai.embeddings import Embeddings
|
13 |
-
from txtai.pipeline import Extractor
|
14 |
|
15 |
-
import pandas as pd
|
16 |
-
import sqlite3
|
17 |
-
import os
|
18 |
|
19 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
20 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
21 |
app = FastAPI(docs_url="/")
|
22 |
-
# app = FastAPI()
|
23 |
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
# """
|
30 |
-
# Using the text2text-generation pipeline from `transformers`, generate text
|
31 |
-
# from the given input text. The model used is `google/flan-t5-small`, which
|
32 |
-
# can be found [here](https://huggingface.co/google/flan-t5-small).
|
33 |
-
# """
|
34 |
-
# output = pipe(text)
|
35 |
-
# return {"output": output[0]["generated_text"]}
|
36 |
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
index_name: str = "index",
|
43 |
-
):
|
44 |
-
# Create embeddings model with content support
|
45 |
-
embeddings = Embeddings({"path": path, "content": True})
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
else:
|
51 |
-
if domain == "":
|
52 |
-
embeddings.load(index_name) # change this later
|
53 |
-
else:
|
54 |
-
print(3)
|
55 |
-
embeddings.load(f"{index_name}/{domain}")
|
56 |
-
return embeddings
|
57 |
|
58 |
|
59 |
-
def
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
def _text_splitter(doc):
|
@@ -68,189 +85,46 @@ def _text_splitter(doc):
|
|
68 |
)
|
69 |
return text_splitter.transform_documents(doc)
|
70 |
|
71 |
-
|
72 |
def _load_docs(path: str):
|
73 |
load_doc = WebBaseLoader(path).load()
|
74 |
doc = _text_splitter(load_doc)
|
75 |
return doc
|
76 |
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
table = "sections"
|
91 |
-
df = pd.read_sql_query(f"select * from {table}", db)
|
92 |
-
return {"max_index": df["indexid"].max()}
|
93 |
-
|
94 |
-
|
95 |
-
def _upsert_docs(doc, embeddings, vector_doc_path: str, db_present: bool):
|
96 |
-
print(vector_doc_path)
|
97 |
-
if db_present:
|
98 |
-
print(1)
|
99 |
-
max_index = _max_index_id(f"{vector_doc_path}/documents")
|
100 |
-
print(max_index)
|
101 |
-
embeddings.upsert(_stream(doc, 500, max_index["max_index"]))
|
102 |
-
print("Embeddings done!!")
|
103 |
-
embeddings.save(vector_doc_path)
|
104 |
-
print("Embeddings done - 1!!")
|
105 |
-
else:
|
106 |
-
print(2)
|
107 |
-
embeddings.index(_stream(doc, 500, 0))
|
108 |
-
embeddings.save(vector_doc_path)
|
109 |
-
max_index = _max_index_id(f"{vector_doc_path}/documents")
|
110 |
-
print(max_index)
|
111 |
-
# check
|
112 |
-
# max_index = _max_index_id(f"{vector_doc_path}/documents")
|
113 |
-
# print(max_index)
|
114 |
-
return max_index
|
115 |
-
|
116 |
-
|
117 |
-
# def prompt(question):
|
118 |
-
# return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
119 |
-
# Question: {question}
|
120 |
-
# Context: """
|
121 |
-
|
122 |
-
|
123 |
-
# def search(query, question=None):
|
124 |
-
# # Default question to query if empty
|
125 |
-
# if not question:
|
126 |
-
# question = query
|
127 |
-
|
128 |
-
# return extractor([("answer", query, prompt(question), False)])[0][1]
|
129 |
-
|
130 |
-
|
131 |
-
# @app.get("/rag")
|
132 |
-
# def rag(question: str):
|
133 |
-
# # question = "what is the document about?"
|
134 |
-
# answer = search(question)
|
135 |
-
# # print(question, answer)
|
136 |
-
# return {answer}
|
137 |
-
|
138 |
-
|
139 |
-
# @app.get("/index")
|
140 |
-
# def get_url_file_path(url_path: str):
|
141 |
-
# embeddings = load_embeddings()
|
142 |
-
# doc = _load_docs(url_path)
|
143 |
-
# embeddings, max_index = _upsert_docs(doc, embeddings)
|
144 |
-
# return max_index
|
145 |
-
|
146 |
-
|
147 |
-
@app.get("/index/{domain}/")
|
148 |
-
def get_domain_file_path(domain: str, file_path: str):
|
149 |
-
print(domain, file_path)
|
150 |
-
print(os.getcwd())
|
151 |
-
bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
|
152 |
-
print(bool_value)
|
153 |
-
if bool_value:
|
154 |
-
embeddings = load_embeddings(domain=domain, db_present=bool_value)
|
155 |
-
print(embeddings)
|
156 |
-
doc = _load_docs(file_path)
|
157 |
-
max_index = _upsert_docs(
|
158 |
-
doc=doc,
|
159 |
-
embeddings=embeddings,
|
160 |
-
vector_doc_path=f"{os.getcwd()}/index/{domain}",
|
161 |
-
db_present=bool_value,
|
162 |
-
)
|
163 |
-
# print("-------")
|
164 |
-
else:
|
165 |
-
embeddings = load_embeddings(domain=domain, db_present=bool_value)
|
166 |
-
doc = _load_docs(file_path)
|
167 |
-
max_index = _upsert_docs(
|
168 |
-
doc=doc,
|
169 |
-
embeddings=embeddings,
|
170 |
-
vector_doc_path=f"{os.getcwd()}/index/{domain}",
|
171 |
-
db_present=bool_value,
|
172 |
-
)
|
173 |
-
# print("Final - output : ", max_index)
|
174 |
-
return "Executed Successfully!!"
|
175 |
-
|
176 |
-
|
177 |
-
def _check_if_db_exists(db_path: str) -> bool:
|
178 |
-
return os.path.exists(db_path)
|
179 |
-
|
180 |
-
|
181 |
-
def _load_embeddings_from_db(
|
182 |
-
db_present: bool,
|
183 |
-
domain: str,
|
184 |
-
#path: str = "sentence-transformers/all-MiniLM-L6-v2",
|
185 |
-
path: str = "sentence-transformers/nli-mpnet-base-v2",
|
186 |
-
):
|
187 |
-
# Create embeddings model with content support
|
188 |
-
embeddings = Embeddings({"path": path, "content": True})
|
189 |
-
# if Vector DB is not present
|
190 |
-
if not db_present:
|
191 |
-
print("db not present")
|
192 |
-
return embeddings
|
193 |
-
else:
|
194 |
-
if domain == "":
|
195 |
-
print("domain empty")
|
196 |
-
embeddings.load("index") # change this later
|
197 |
-
else:
|
198 |
-
print(3)
|
199 |
-
embeddings.load(f"{os.getcwd()}/index/{domain}")
|
200 |
-
return embeddings
|
201 |
|
202 |
|
203 |
def _prompt(question):
|
204 |
-
return f"""Answer
|
205 |
Question: {question}
|
206 |
Context: """
|
207 |
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
if not question:
|
212 |
-
question = query
|
213 |
-
|
214 |
-
# template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
215 |
-
# Question: {question}
|
216 |
-
# Context: """
|
217 |
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
#
|
222 |
-
|
223 |
-
|
|
|
224 |
|
225 |
|
226 |
-
|
227 |
-
def rag(domain: str, question: str):
|
228 |
-
print()
|
229 |
-
db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
|
230 |
-
print(db_exists)
|
231 |
-
|
232 |
-
bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
|
233 |
-
print(bool_value)
|
234 |
-
|
235 |
-
|
236 |
-
# if db_exists:
|
237 |
-
embeddings = _load_embeddings_from_db(db_exists, domain)
|
238 |
-
# Create extractor instance
|
239 |
-
#extractor = Extractor(embeddings, "google/flan-t5-base")
|
240 |
-
#extractor = Extractor(embeddings, "TheBloke/Llama-2-7B-GGUF")
|
241 |
-
print("before calling extractor")
|
242 |
-
#extractor = Extractor(embeddings, "distilbert-base-cased-distilled-squad")
|
243 |
-
extractor = Extractor(embeddings, "google/flan-t5-base")
|
244 |
-
# llm = HuggingFaceHub(
|
245 |
-
# repo_id="google/flan-t5-xxl",
|
246 |
-
# model_kwargs={"temperature": 1, "max_length": 1000000},
|
247 |
-
# )
|
248 |
-
# else:
|
249 |
-
print("before doing Q&A")
|
250 |
-
answer = _search(question, extractor)
|
251 |
-
|
252 |
-
text = _prompt(question)
|
253 |
-
text += "\n" + " ".join(x["text"] for x in embeddings.search(question))
|
254 |
-
print("context \n")
|
255 |
-
print(text)
|
256 |
-
return {"question": question, "answer": answer, "context": text}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
import phoenix as px
|
6 |
+
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor
|
7 |
+
|
8 |
+
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain import HuggingFaceHub
|
12 |
+
|
13 |
+
from langchain.chains import RetrievalQA
|
14 |
+
from langchain.callbacks import StdOutCallbackHandler
|
15 |
+
|
16 |
+
#from langchain.retrievers import KNNRetriever
|
17 |
+
from langchain.storage import LocalFileStore
|
18 |
+
from langchain.embeddings import CacheBackedEmbeddings
|
19 |
+
from langchain.vectorstores import FAISS
|
20 |
+
|
21 |
|
|
|
|
|
|
|
22 |
from langchain.document_loaders import WebBaseLoader
|
23 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
24 |
|
25 |
+
# from langchain import HuggingFaceHub
|
26 |
+
# from langchain.prompts import PromptTemplate
|
27 |
+
# from langchain.chains import LLMChain
|
28 |
+
# from txtai.embeddings import Embeddings
|
29 |
+
# from txtai.pipeline import Extractor
|
30 |
|
31 |
+
# import pandas as pd
|
32 |
+
# import sqlite3
|
33 |
+
# import os
|
34 |
|
35 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
36 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
37 |
app = FastAPI(docs_url="/")
|
|
|
38 |
|
39 |
+
#phoenix setup
|
40 |
+
session = px.launch_app()
|
41 |
+
# If no exporter is specified, the tracer will export to the locally running Phoenix server
|
42 |
+
tracer = OpenInferenceTracer()
|
43 |
+
# If no tracer is specified, a tracer is constructed for you
|
44 |
+
LangChainInstrumentor(tracer).instrument()
|
45 |
+
print(session.url)
|
46 |
+
|
47 |
|
48 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
|
49 |
|
50 |
+
# embedding cache
|
51 |
+
store = LocalFileStore("./cache/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# define embedder
|
54 |
+
core_embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
55 |
+
embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store)
|
56 |
|
57 |
+
# define llm
|
58 |
+
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
|
59 |
+
#llm=HuggingFaceHub(repo_id="gpt2", model_kwargs={"temperature":1, "max_length":1000000})
|
60 |
+
handler = StdOutCallbackHandler()
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# set global variable
|
63 |
+
vectorstore
|
64 |
+
retriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
+
def initialize_vectorstore():
|
68 |
+
|
69 |
+
webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/tredence-helped-a-global-retailer-providing-holistic-campaign-analytics-by-using-the-power-of-gcp").load()
|
70 |
+
webpage_chunks = text_splitter.transform_documents(webpage_loader)
|
71 |
+
|
72 |
+
# store embeddings in vector store
|
73 |
+
vectorstore = FAISS.from_documents(webpage_chunks, embedder)
|
74 |
+
print("vector store initialized with sample doc")
|
75 |
+
|
76 |
+
# instantiate a retriever
|
77 |
+
retriever = vectorstore.as_retriever()
|
78 |
|
79 |
|
80 |
def _text_splitter(doc):
|
|
|
85 |
)
|
86 |
return text_splitter.transform_documents(doc)
|
87 |
|
|
|
88 |
def _load_docs(path: str):
|
89 |
load_doc = WebBaseLoader(path).load()
|
90 |
doc = _text_splitter(load_doc)
|
91 |
return doc
|
92 |
|
93 |
|
94 |
+
@app.get("/index/")
|
95 |
+
def get_domain_file_path(file_path: str):
|
96 |
+
print(file_path)
|
97 |
+
|
98 |
+
webpage_loader = _load_docs(file_path)
|
99 |
+
|
100 |
+
webpage_chunks = _text_splitter(webpage_loader)
|
101 |
+
|
102 |
+
# store embeddings in vector store
|
103 |
+
vectorstore.add_documents(webpage_chunks)
|
104 |
+
|
105 |
+
return "document loaded to vector store successfully!!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
def _prompt(question):
|
109 |
+
return f"""Answer following question using only the context below. Say 'Could not find answer with provided context' when question can't be answered.
|
110 |
Question: {question}
|
111 |
Context: """
|
112 |
|
113 |
|
114 |
+
@app.get("/rag")
|
115 |
+
def rag( question: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
chain = RetrievalQA.from_chain_type(
|
118 |
+
llm=llm,
|
119 |
+
retriever=retriever,
|
120 |
+
callbacks=[handler],
|
121 |
+
return_source_documents=True
|
122 |
+
)
|
123 |
|
124 |
+
#response = chain("how tredence brought good insight?")
|
125 |
+
response = chain(_prompt(question))
|
126 |
+
|
127 |
+
return {"question": question, "answer": response['result']}
|
128 |
|
129 |
|
130 |
+
initialize_vectorstore()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -4,10 +4,8 @@ uvicorn[standard]==0.17.*
|
|
4 |
sentencepiece==0.1.*
|
5 |
torch==1.12.*
|
6 |
transformers==4.*
|
7 |
-
txtai==6.0.*
|
8 |
langchain==0.0.301
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
llama-cpp-python
|
|
|
4 |
sentencepiece==0.1.*
|
5 |
torch==1.12.*
|
6 |
transformers==4.*
|
|
|
7 |
langchain==0.0.301
|
8 |
+
arize-phoenix
|
9 |
+
huggingface_hub
|
10 |
+
sentence-transformers
|
11 |
+
faiss-cpu
|
|