from fastapi import FastAPI import os import phoenix as px from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models from langchain.chains.question_answering import load_qa_chain from langchain import HuggingFaceHub from langchain.chains import RetrievalQA from langchain.callbacks import StdOutCallbackHandler #from langchain.retrievers import KNNRetriever from langchain.storage import LocalFileStore from langchain.embeddings import CacheBackedEmbeddings from langchain.vectorstores import FAISS from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter # from langchain import HuggingFaceHub # from langchain.prompts import PromptTemplate # from langchain.chains import LLMChain # from txtai.embeddings import Embeddings # from txtai.pipeline import Extractor # import pandas as pd # import sqlite3 # import os # NOTE - we configure docs_url to serve the interactive Docs at the root path # of the app. This way, we can use the docs as a landing page for the app on Spaces. app = FastAPI(docs_url="/") #phoenix setup session = px.launch_app() # If no exporter is specified, the tracer will export to the locally running Phoenix server tracer = OpenInferenceTracer() # If no tracer is specified, a tracer is constructed for you LangChainInstrumentor(tracer).instrument() print(session.url) os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" # embedding cache store = LocalFileStore("./cache/") # define embedder core_embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store) # define llm llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) #llm=HuggingFaceHub(repo_id="gpt2", model_kwargs={"temperature":1, "max_length":1000000}) handler = StdOutCallbackHandler() # set global variable vectorstore retriever def initialize_vectorstore(): webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/tredence-helped-a-global-retailer-providing-holistic-campaign-analytics-by-using-the-power-of-gcp").load() webpage_chunks = text_splitter.transform_documents(webpage_loader) # store embeddings in vector store vectorstore = FAISS.from_documents(webpage_chunks, embedder) print("vector store initialized with sample doc") # instantiate a retriever retriever = vectorstore.as_retriever() def _text_splitter(doc): text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=50, length_function=len, ) return text_splitter.transform_documents(doc) def _load_docs(path: str): load_doc = WebBaseLoader(path).load() doc = _text_splitter(load_doc) return doc @app.get("/index/") def get_domain_file_path(file_path: str): print(file_path) webpage_loader = _load_docs(file_path) webpage_chunks = _text_splitter(webpage_loader) # store embeddings in vector store vectorstore.add_documents(webpage_chunks) return "document loaded to vector store successfully!!" def _prompt(question): return f"""Answer following question using only the context below. Say 'Could not find answer with provided context' when question can't be answered. Question: {question} Context: """ @app.get("/rag") def rag( question: str): chain = RetrievalQA.from_chain_type( llm=llm, retriever=retriever, callbacks=[handler], return_source_documents=True ) #response = chain("how tredence brought good insight?") response = chain(_prompt(question)) return {"question": question, "answer": response['result']} initialize_vectorstore()