|
from fastapi import FastAPI |
|
import os |
|
import json |
|
import pandas as pd |
|
import time |
|
|
|
import phoenix as px |
|
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor |
|
|
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain import HuggingFaceHub |
|
from langchain.prompts import PromptTemplate |
|
|
|
from langchain.chains import RetrievalQA |
|
from langchain.callbacks import StdOutCallbackHandler |
|
|
|
|
|
from langchain.storage import LocalFileStore |
|
from langchain.embeddings import CacheBackedEmbeddings |
|
from langchain.vectorstores import FAISS |
|
|
|
|
|
from langchain.document_loaders import WebBaseLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app = FastAPI(docs_url="/") |
|
|
|
|
|
session = px.launch_app() |
|
|
|
tracer = OpenInferenceTracer() |
|
|
|
LangChainInstrumentor(tracer).instrument() |
|
print(session.url) |
|
|
|
|
|
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" |
|
|
|
|
|
store = LocalFileStore("./cache/") |
|
|
|
|
|
core_embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store) |
|
|
|
|
|
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) |
|
|
|
handler = StdOutCallbackHandler() |
|
|
|
|
|
vectorstore = None |
|
retriever = None |
|
|
|
|
|
def initialize_vectorstore(): |
|
|
|
webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/forecasting-app-installs-for-a-large-retailer-in-the-us").load() |
|
webpage_chunks = _text_splitter(webpage_loader) |
|
|
|
global vectorstore |
|
global retriever |
|
|
|
|
|
vectorstore = FAISS.from_documents(webpage_chunks, embedder) |
|
print("vector store initialized with sample doc") |
|
|
|
|
|
retriever = vectorstore.as_retriever() |
|
|
|
|
|
def _text_splitter(doc): |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=600, |
|
chunk_overlap=50, |
|
length_function=len, |
|
) |
|
return text_splitter.transform_documents(doc) |
|
|
|
def _load_docs(path: str): |
|
load_doc = WebBaseLoader(path).load() |
|
doc = _text_splitter(load_doc) |
|
return doc |
|
|
|
|
|
@app.get("/index/") |
|
def get_domain_file_path(file_path: str): |
|
print("file_path " ,file_path) |
|
|
|
webpage_loader = _load_docs(file_path) |
|
|
|
webpage_chunks = _text_splitter(webpage_loader) |
|
|
|
|
|
vectorstore.add_documents(webpage_chunks) |
|
|
|
return "document loaded to vector store successfully!!" |
|
|
|
|
|
def _prompt(question): |
|
return f"""Answer following question using only the context below. Say 'Could not find answer with provided context' when question can't be answered. |
|
Question: {question} |
|
Context: """ |
|
|
|
|
|
|
|
class BasePromptContext: |
|
def __init__(self): |
|
self.variables_list = ["question","answer","context"] |
|
self.base_template = """Please act as an impartial judge and evaluate the quality of the provided answer which attempts to answer the provided question based on a provided context. |
|
And you'll need to submit your grading for the correctness, comprehensiveness and readability of the answer, using JSON format with the 2 items in parenthesis: |
|
("score": [your score number for the correctness of the answer], "reasoning": [your one line step by step reasoning about the correctness of the answer]) |
|
Below is your grading rubric: |
|
- Correctness: If the answer correctly answer the question, below are the details for different scores: |
|
- Score 0: the answer is completely incorrect, doesn’t mention anything about the question or is completely contrary to the correct answer. |
|
- For example, when asked “How to terminate a databricks cluster”, the answer is empty string, or content that’s completely irrelevant, or sorry I don’t know the answer. |
|
- Score 4: the answer provides some relevance to the question and answer one aspect of the question correctly. |
|
- Example: |
|
- Question: How to terminate a databricks cluster |
|
- Answer: Databricks cluster is a cloud-based computing environment that allows users to process big data and run distributed data processing tasks efficiently. |
|
- Or answer: In the Databricks workspace, navigate to the "Clusters" tab. And then this is a hard question that I need to think more about it |
|
- Score 7: the answer mostly answer the question but is missing or hallucinating on one critical aspect. |
|
- Example: |
|
- Question: How to terminate a databricks cluster” |
|
- Answer: “In the Databricks workspace, navigate to the "Clusters" tab. |
|
Find the cluster you want to terminate from the list of active clusters. |
|
And then you’ll find a button to terminate all clusters at once” |
|
- Score 10: the answer correctly answer the question and not missing any major aspect |
|
- Example: |
|
- Question: How to terminate a databricks cluster |
|
- Answer: In the Databricks workspace, navigate to the "Clusters" tab. |
|
Find the cluster you want to terminate from the list of active clusters. |
|
Click on the down-arrow next to the cluster name to open the cluster details. |
|
Click on the "Terminate" button. A confirmation dialog will appear. Click "Terminate" again to confirm the action.” |
|
Provided question: |
|
{question} |
|
Provided answer: |
|
{answer} |
|
Provided context: |
|
{context} |
|
Please provide your grading for the correctness and explain you gave the particular grading""" |
|
|
|
|
|
class Evaluater: |
|
def __init__(self, item): |
|
self.question = item["question"] |
|
self.answer = item["answer"] |
|
|
|
self.context = item["context"] |
|
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) |
|
|
|
def get_prompt_template(self): |
|
prompt = BasePromptContext() |
|
template = prompt.base_template |
|
varialbles = prompt.variables_list |
|
eval_template = PromptTemplate(input_variables=varialbles, template=template) |
|
return eval_template |
|
|
|
def evaluate(self): |
|
prompt = self.get_prompt_template().format(question = self.question, answer = self.answer, context = self.context) |
|
score = self.llm(prompt) |
|
return score |
|
|
|
|
|
def _create_evaluation_scenario(item): |
|
score = Evaluater(item).evaluate() |
|
return score |
|
|
|
|
|
class HallucinatePromptContext: |
|
def __init__(self): |
|
self.variables_list = ["query","answer","context"] |
|
self.base_template = """In this task, you will be presented with a query, a reference text and an answer. The answer is |
|
|
|
generated to the question based on the reference text. The answer may contain false information, you |
|
|
|
must use the reference text to determine if the answer to the question contains false information, |
|
|
|
if the answer is a hallucination of facts. Your objective is to determine whether the reference text |
|
|
|
contains factual information and is not a hallucination. A 'hallucination' in this context refers to |
|
|
|
an answer that is not based on the reference text or assumes information that is not available in |
|
|
|
the reference text. Your response should be a single word: either "factual" or "hallucinated", and |
|
|
|
it should not include any other text or characters. "hallucinated" indicates that the answer |
|
|
|
provides factually inaccurate information to the query based on the reference text. "factual" |
|
|
|
indicates that the answer to the question is correct relative to the reference text, and does not |
|
|
|
contain made up information. Please read the query and reference text carefully before determining |
|
|
|
your response. |
|
|
|
|
|
|
|
# Query: {query} |
|
|
|
# Reference text: {context} |
|
|
|
# Answer: {answer} |
|
|
|
Is the answer above factual or hallucinated based on the query and reference text?""" |
|
|
|
|
|
class HallucinatonEvaluater: |
|
def __init__(self, item): |
|
self.question = item["question"] |
|
self.answer = item["answer"] |
|
|
|
self.context = item["context"] |
|
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) |
|
|
|
def get_prompt_template(self): |
|
prompt = HallucinatePromptContext() |
|
template = prompt.base_template |
|
varialbles = prompt.variables_list |
|
eval_template = PromptTemplate(input_variables=varialbles, template=template) |
|
return eval_template |
|
|
|
def evaluate(self): |
|
prompt = self.get_prompt_template().format(query = self.question, answer = self.answer, context = self.context) |
|
score = self.llm(prompt) |
|
return score |
|
|
|
|
|
def _create_evaluation_scenario(item): |
|
score = Evaluater(item).evaluate() |
|
return score |
|
|
|
|
|
def _create_hallucination_scenario(item): |
|
score = HallucinatonEvaluater(item).evaluate() |
|
return score |
|
|
|
|
|
@app.get("/rag") |
|
def rag( question: str, evaluate: bool): |
|
|
|
chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
retriever=retriever, |
|
callbacks=[handler], |
|
return_source_documents=True |
|
) |
|
|
|
|
|
response = chain(question) |
|
print(response["result"]) |
|
|
|
time.sleep(4) |
|
|
|
df = px.active_session().get_spans_dataframe() |
|
print(px.active_session()) |
|
print(px.active_session().get_spans_dataframe()) |
|
print(df.count()) |
|
df_sorted = df.sort_values(by='end_time',ascending=False) |
|
|
|
model_input = json.loads(df_sorted[df_sorted["name"] == "LLMChain"]["attributes.input.value"][0]) |
|
context = model_input["context"] |
|
|
|
print(context) |
|
|
|
if evaluate: |
|
score = _create_evaluation_scenario({ |
|
"question": question, |
|
"answer": response['result'], |
|
"context": context |
|
}) |
|
else: |
|
score = "Evaluation is Turned OFF" |
|
|
|
return {"question": question, "answer": response['result'], "context": context, "score": score} |
|
|
|
|
|
initialize_vectorstore() |
|
|
|
|
|
@app.get("/trace") |
|
def trace(): |
|
df = px.active_session().get_spans_dataframe().fillna('') |
|
return df |
|
|
|
|
|
@app.get("/hallucinate") |
|
def trace(question: str, answer: str, context: str): |
|
hallucination_score = _create_hallucination_scenario({ |
|
"question": question, |
|
"answer": answer, |
|
"context": context |
|
} |
|
) |
|
|
|
return {"hallucination_score": hallucination_score} |
|
|
|
|
|
|
|
|
|
''' |
|
#import getpass |
|
from pyngrok import ngrok, conf |
|
#print("Enter your authtoken, which can be copied from https://dashboard.ngrok.com/auth") |
|
conf.get_default().auth_token="2WJNWULs5bCOyJnV24WQYJEKod3_YQUbM5EGCp8sgE4aQvzi" |
|
port = 37689 |
|
# Open a ngrok tunnel to the HTTP server |
|
conf.get_default().monitor_thread = False |
|
public_url = ngrok.connect(port).public_url |
|
print(" * ngrok tunnel \"{}\" -> \"http://127.0.0.1:{}\"".format(public_url, port)) |
|
''' |
|
|
|
|