|
import os |
|
import json |
|
import pandas as pd |
|
import time |
|
|
|
import phoenix as px |
|
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor |
|
|
|
|
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain import HuggingFaceHub |
|
from langchain.prompts import PromptTemplate |
|
|
|
from langchain.chains import RetrievalQA |
|
from langchain.callbacks import StdOutCallbackHandler |
|
|
|
|
|
from langchain.storage import LocalFileStore |
|
from langchain.embeddings import CacheBackedEmbeddings |
|
from langchain.vectorstores import FAISS |
|
|
|
|
|
from langchain.document_loaders import WebBaseLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
|
|
import numpy as np |
|
import streamlit as st |
|
import pandas as pd |
|
|
|
|
|
|
|
global trace_df |
|
|
|
@st.cache_resource |
|
def tracer_config(): |
|
|
|
session = px.launch_app() |
|
|
|
tracer = OpenInferenceTracer() |
|
|
|
LangChainInstrumentor(tracer).instrument() |
|
print(session.url) |
|
|
|
tracer_config() |
|
|
|
tab1, tab2 = st.tabs(["π RAG", "π FactVsHallucinate" ]) |
|
|
|
|
|
|
|
|
|
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" |
|
|
|
|
|
|
|
|
|
|
|
embedder = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
|
|
|
|
|
|
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) |
|
|
|
handler = StdOutCallbackHandler() |
|
|
|
|
|
|
|
|
|
|
|
|
|
class HallucinatePromptContext: |
|
def __init__(self): |
|
self.variables_list = ["query","answer","context"] |
|
self.base_template = """In this task, you will be presented with a query, a reference text and an answer. The answer is |
|
generated to the question based on the reference text. The answer may contain false information, you |
|
must use the reference text to determine if the answer to the question contains false information, |
|
if the answer is a hallucination of facts. Your objective is to determine whether the reference text |
|
contains factual information and is not a hallucination. A 'hallucination' in this context refers to |
|
an answer that is not based on the reference text or assumes information that is not available in |
|
the reference text. Your response should be a single word: either "factual" or "hallucinated", and |
|
it should not include any other text or characters. "hallucinated" indicates that the answer |
|
provides factually inaccurate information to the query based on the reference text. "factual" |
|
indicates that the answer to the question is correct relative to the reference text, and does not |
|
contain made up information. Please read the query and reference text carefully before determining |
|
your response. |
|
|
|
# Query: {query} |
|
# Reference text: {context} |
|
# Answer: {answer} |
|
Is the answer above factual or hallucinated based on the query and reference text?""" |
|
|
|
|
|
|
|
class HallucinatonEvaluater: |
|
def __init__(self, item): |
|
self.question = item["question"] |
|
self.answer = item["answer"] |
|
|
|
self.context = item["context"] |
|
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) |
|
|
|
def get_prompt_template(self): |
|
prompt = HallucinatePromptContext() |
|
template = prompt.base_template |
|
varialbles = prompt.variables_list |
|
eval_template = PromptTemplate(input_variables=varialbles, template=template) |
|
return eval_template |
|
|
|
def evaluate(self): |
|
prompt = self.get_prompt_template().format(query = self.question, answer = self.answer, context = self.context) |
|
score = self.llm(prompt) |
|
return score |
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def initialize_vectorstore(): |
|
|
|
webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/forecasting-app-installs-for-a-large-retailer-in-the-us").load() |
|
webpage_chunks = _text_splitter(webpage_loader) |
|
|
|
global vectorstore |
|
global retriever |
|
|
|
|
|
vectorstore = FAISS.from_documents(webpage_chunks, embedder) |
|
print("vector store initialized with sample doc") |
|
|
|
|
|
retriever = vectorstore.as_retriever() |
|
|
|
return retriever |
|
|
|
|
|
def _text_splitter(doc): |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=600, |
|
chunk_overlap=50, |
|
length_function=len, |
|
) |
|
return text_splitter.transform_documents(doc) |
|
|
|
def _load_docs(path: str): |
|
load_doc = WebBaseLoader(path).load() |
|
doc = _text_splitter(load_doc) |
|
return doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
def rag_response(response): |
|
st.markdown("""<hr style="height:10px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True) |
|
st.subheader('RAG response') |
|
st.text_area(label="user query", value=response["query"], height=30) |
|
st.text_area(label="RAG output", value=response["result"]) |
|
st.text_area(label="Augmented knowledge", value=response["source_documents"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_hallucination_scenario(item): |
|
score = HallucinatonEvaluater(item).evaluate() |
|
return score |
|
|
|
def hallu_eval(question: str, answer: str, context: str): |
|
print("in hallu eval") |
|
hallucination_score = _create_hallucination_scenario({ |
|
"question": question, |
|
"answer": answer, |
|
"context": context |
|
} |
|
) |
|
print("got hallu score") |
|
st.text_area(label="Hallucinated?", value=hallucination_score, height=30) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def click_button(response): |
|
|
|
|
|
|
|
hallu_eval(response["query"], response["result"], "blah blah") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with tab1: |
|
|
|
with st.form(" RAG with evaluation - scoring & hallucination "): |
|
|
|
retriever = initialize_vectorstore() |
|
|
|
|
|
options = ["true", "false"] |
|
question = st.text_input(label="user question", value="", label_visibility="visible", disabled=False) |
|
evaluate = st.selectbox(label="Evaluation",options=options, index=0, placeholder="Choose an option", disabled=False, label_visibility="visible") |
|
|
|
|
|
|
|
if st.form_submit_button("RAG with evaluation"): |
|
print("retrie ,", retriever) |
|
chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
retriever=retriever, |
|
callbacks=[handler], |
|
return_source_documents=True |
|
) |
|
|
|
|
|
response = chain(question) |
|
print(response["result"]) |
|
|
|
|
|
rag_response(response) |
|
|
|
click_button(response) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with tab2: |
|
|
|
|
|
|
|
with st.form(" LLM-aasisted evaluation of Hallucination"): |
|
|
|
|
|
|
|
question = st.text_input(label="question", value="", label_visibility="visible", disabled=False) |
|
answer = st.text_input(label="answer", value="", label_visibility="visible", disabled=False) |
|
context = st.text_input(label="context", value="", label_visibility="visible", disabled=False) |
|
|
|
|
|
if st.form_submit_button("Evaluate"): |
|
hallu_eval(question, answer, context) |
|
|
|
|
|
print("activ session: ", px.active_session().get_spans_dataframe()) |
|
trace_df = px.active_session().get_spans_dataframe() |
|
|
|
st.session_state['trace_df'] = trace_df |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rag(): |
|
print("in rag") |
|
options = ["true", "false"] |
|
question = st.text_input(label="user question", value="", label_visibility="visible", disabled=False) |
|
evaluate = st.selectbox(label="select evaluation",options=options, index=0, placeholder="Choose an option", disabled=False, label_visibility="visible") |
|
|
|
|
|
|
|
if st.button("do RAG"): |
|
chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
retriever=retriever, |
|
callbacks=[handler], |
|
return_source_documents=True |
|
) |
|
|
|
|
|
response = chain(question) |
|
print(response["result"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag_response(response) |
|
|
|
|
|
|
|
|
|
click = st.button("Do you want to see more?") |
|
if click: |
|
st.session_state.more_stuff = True |
|
|
|
if st.session_state.more_stuff: |
|
click_button(response) |
|
|
|
|
|
|
|
return(response) |