streamlit / streamapp.py
DeepVen's picture
Upload 2 files
3f19740
raw
history blame
10.6 kB
import os
import json
import pandas as pd
import time
import phoenix as px
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor
#from hallucinator import HallucinatonEvaluater
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.callbacks import StdOutCallbackHandler
#from langchain.retrievers import KNNRetriever
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain.vectorstores import FAISS
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import numpy as np
import streamlit as st
import pandas as pd
# from sklearn import datasets
# from sklearn.ensemble import RandomForestClassifier
global trace_df
@st.cache_resource
def tracer_config():
#phoenix setup
session = px.launch_app()
# If no exporter is specified, the tracer will export to the locally running Phoenix server
tracer = OpenInferenceTracer()
# If no tracer is specified, a tracer is constructed for you
LangChainInstrumentor(tracer).instrument()
print(session.url)
tracer_config()
tab1, tab2 = st.tabs(["πŸ“ˆ RAG", "πŸ—ƒ FactVsHallucinate" ])
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
# embedding cache
#store = LocalFileStore("./cache/")
# define embedder
embedder = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
#embedder=HuggingFaceHub(repo_id="sentence-transformers/all-mpnet-base-v2")
#embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store)
# define llm
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
#llm=HuggingFaceHub(repo_id="gpt2", model_kwargs={"temperature":1, "max_length":1000000})
handler = StdOutCallbackHandler()
# set global variable
# vectorstore = None
# retriever = None
class HallucinatePromptContext:
def __init__(self):
self.variables_list = ["query","answer","context"]
self.base_template = """In this task, you will be presented with a query, a reference text and an answer. The answer is
generated to the question based on the reference text. The answer may contain false information, you
must use the reference text to determine if the answer to the question contains false information,
if the answer is a hallucination of facts. Your objective is to determine whether the reference text
contains factual information and is not a hallucination. A 'hallucination' in this context refers to
an answer that is not based on the reference text or assumes information that is not available in
the reference text. Your response should be a single word: either "factual" or "hallucinated", and
it should not include any other text or characters. "hallucinated" indicates that the answer
provides factually inaccurate information to the query based on the reference text. "factual"
indicates that the answer to the question is correct relative to the reference text, and does not
contain made up information. Please read the query and reference text carefully before determining
your response.
# Query: {query}
# Reference text: {context}
# Answer: {answer}
Is the answer above factual or hallucinated based on the query and reference text?"""
class HallucinatonEvaluater:
def __init__(self, item):
self.question = item["question"]
self.answer = item["answer"]
#self.domain = item["domain"]
self.context = item["context"]
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
def get_prompt_template(self):
prompt = HallucinatePromptContext()
template = prompt.base_template
varialbles = prompt.variables_list
eval_template = PromptTemplate(input_variables=varialbles, template=template)
return eval_template
def evaluate(self):
prompt = self.get_prompt_template().format(query = self.question, answer = self.answer, context = self.context)
score = self.llm(prompt)
return score
@st.cache_resource
def initialize_vectorstore():
webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/forecasting-app-installs-for-a-large-retailer-in-the-us").load()
webpage_chunks = _text_splitter(webpage_loader)
global vectorstore
global retriever
# store embeddings in vector store
vectorstore = FAISS.from_documents(webpage_chunks, embedder)
print("vector store initialized with sample doc")
# instantiate a retriever
retriever = vectorstore.as_retriever()
return retriever
def _text_splitter(doc):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=600,
chunk_overlap=50,
length_function=len,
)
return text_splitter.transform_documents(doc)
def _load_docs(path: str):
load_doc = WebBaseLoader(path).load()
doc = _text_splitter(load_doc)
return doc
def rag_response(response):
st.markdown("""<hr style="height:10px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True)
st.subheader('RAG response')
st.text_area(label="user query", value=response["query"], height=30)
st.text_area(label="RAG output", value=response["result"])
st.text_area(label="Augmented knowledge", value=response["source_documents"])
#st.button("Check Hallucination")
# Create extractor instance
def _create_hallucination_scenario(item):
score = HallucinatonEvaluater(item).evaluate()
return score
def hallu_eval(question: str, answer: str, context: str):
print("in hallu eval")
hallucination_score = _create_hallucination_scenario({
"question": question,
"answer": answer,
"context": context
}
)
print("got hallu score")
st.text_area(label="Hallucinated?", value=hallucination_score, height=30)
#return {"hallucination_score": hallucination_score}
#time.sleep(10)
# if 'clicked' not in st.session_state:
# print("set state to False")
# st.session_state.clicked = False
def click_button(response):
# print("set state to True")
# st.session_state.clicked = True
hallu_eval(response["query"], response["result"], "blah blah")
#st.write(''' # RAG App''')
with tab1:
with st.form(" RAG with evaluation - scoring & hallucination "):
#tab1.subheader(''' # RAG App''')
retriever = initialize_vectorstore()
#print("lenght in tab1, ", len(vectorstore.serialize_to_bytes()))
options = ["true", "false"]
question = st.text_input(label="user question", value="", label_visibility="visible", disabled=False)
evaluate = st.selectbox(label="Evaluation",options=options, index=0, placeholder="Choose an option", disabled=False, label_visibility="visible")
if st.form_submit_button("RAG with evaluation"):
print("retrie ,", retriever)
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
callbacks=[handler],
return_source_documents=True
)
#response = chain("how tredence brought good insight?")
response = chain(question)
print(response["result"])
rag_response(response)
click_button(response)
# if st.session_state.clicked:
# # The message and nested widget will remain on the page
# hallu_eval(response["query"], response["result"], "blah blah")
# print("in if for hallu")
with tab2:
with st.form(" LLM-aasisted evaluation of Hallucination"):
#print("lenght in tab2, ", len(vectorstore.serialize_to_bytes()))
question = st.text_input(label="question", value="", label_visibility="visible", disabled=False)
answer = st.text_input(label="answer", value="", label_visibility="visible", disabled=False)
context = st.text_input(label="context", value="", label_visibility="visible", disabled=False)
if st.form_submit_button("Evaluate"):
hallu_eval(question, answer, context)
print("activ session: ", px.active_session().get_spans_dataframe())
trace_df = px.active_session().get_spans_dataframe()
st.session_state['trace_df'] = trace_df
# with tab3:
# with st.form(" trace"):
# if px.active_session():
# df0 = px.active_session().get_spans_dataframe()
# if not df0.empty:
# df= df0.fillna('')
# st.dataframe(df)
def rag():
print("in rag")
options = ["true", "false"]
question = st.text_input(label="user question", value="", label_visibility="visible", disabled=False)
evaluate = st.selectbox(label="select evaluation",options=options, index=0, placeholder="Choose an option", disabled=False, label_visibility="visible")
if st.button("do RAG"):
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
callbacks=[handler],
return_source_documents=True
)
#response = chain("how tredence brought good insight?")
response = chain(question)
print(response["result"])
# time.sleep(4)
# df = px.active_session().get_spans_dataframe()
# print(px.active_session())
# print(px.active_session().get_spans_dataframe())
# print(df.count())
# df_sorted = df.sort_values(by='end_time',ascending=False)
# model_input = json.loads(df_sorted[df_sorted["name"] == "LLMChain"]["attributes.input.value"][0])
# context = model_input["context"]
# print(context)
# if evaluate:
# score = _create_evaluation_scenario({
# "question": question,
# "answer": response['result'],
# "context": context
# })
# else:
# score = "Evaluation is Turned OFF"
# return {"question": question, "answer": response['result'], "context": context, "score": score}
rag_response(response)
# if st.button("click me"):
# click_button(response)
click = st.button("Do you want to see more?")
if click:
st.session_state.more_stuff = True
if st.session_state.more_stuff:
click_button(response)
#st.write("Doing more optional stuff")
return(response)