|
from tensorflow import keras |
|
import gradio |
|
import requests |
|
inception_net = keras.applications.MobileNetV2() |
|
|
|
response = requests.get("https://git.io/JJkYN") |
|
labels = response.text.split("\n") |
|
|
|
def classify_image(inp): |
|
inp = inp.reshape((-1, 224, 224, 3)) |
|
inp = keras.applications.mobilenet_v2.preprocess_input(inp) |
|
prediction = inception_net.predict(inp).flatten() |
|
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} |
|
return confidences |
|
|
|
gradio.Interface(fn=classify_image, |
|
inputs=gradio.Image(shape=(224, 224)), |
|
outputs=gradio.Label(num_top_classes=3),interpretation='default').launch(debug='False') |