File size: 11,646 Bytes
fff8451
 
 
 
cb5166a
 
fff8451
 
 
 
 
 
b477ed7
fff8451
 
 
 
071420e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff8451
cb5166a
 
fff8451
 
 
 
 
 
0068a8e
fff8451
 
 
 
0068a8e
fff8451
 
0068a8e
fff8451
 
 
0068a8e
fff8451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b60eb
fff8451
 
 
 
071420e
3f40fd4
 
 
 
071420e
 
 
 
f6d5501
071420e
 
 
 
 
 
 
 
f6d5501
071420e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d5501
071420e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d5501
 
 
 
 
 
 
 
 
071420e
fff8451
 
071420e
3f40fd4
071420e
 
9070608
 
071420e
9070608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77db079
9070608
 
77db079
9070608
 
 
 
 
071420e
9070608
 
b6268aa
9070608
 
 
 
071420e
9070608
 
071420e
0025f8f
071420e
da2b6f6
 
 
 
 
fff8451
 
071420e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import imageio
import os
import gradio as gr
import subprocess
from subprocess import getoutput
from diffusers.schedulers import EulerAncestralDiscreteScheduler
from transformers import T5EncoderModel, T5Tokenizer
from allegro.pipelines.pipeline_allegro import AllegroPipeline
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel

from huggingface_hub import snapshot_download

weights_dir = './allegro_weights'
os.makedirs(weights_dir, exist_ok=True)

is_shared_ui = True if "fffiloni/allegro-t2v" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()

if not is_shared_ui:
    snapshot_download(
        repo_id='rhymes-ai/Allegro',
        allow_patterns=[
            'scheduler/**',
            'text_encoder/**',
            'tokenizer/**',
            'transformer/**',
            'vae/**',
        ],
        local_dir=weights_dir,
    )

if is_gpu_associated:
    gpu_info = getoutput('nvidia-smi')

def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload):
    dtype = torch.bfloat16

    # Load models
    vae = AllegroAutoencoderKL3D.from_pretrained(
        "./allegro_weights/vae/", 
        torch_dtype=torch.float32
    ).cuda()
    vae.eval()

    text_encoder = T5EncoderModel.from_pretrained("./allegro_weights/text_encoder/", torch_dtype=dtype)
    text_encoder.eval()

    tokenizer = T5Tokenizer.from_pretrained("./allegro_weights/tokenizer/")

    scheduler = EulerAncestralDiscreteScheduler()

    transformer = AllegroTransformer3DModel.from_pretrained("./allegro_weights/transformer/", torch_dtype=dtype).cuda()
    transformer.eval()

    allegro_pipeline = AllegroPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        scheduler=scheduler,
        transformer=transformer
    ).to("cuda:0")

    positive_prompt = """
    (masterpiece), (best quality), (ultra-detailed), (unwatermarked), 
    {} 
    emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, 
    sharp focus, high budget, cinemascope, moody, epic, gorgeous
    """

    negative_prompt = """
    nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, 
    low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
    """

    # Process user prompt
    user_prompt = positive_prompt.format(user_prompt.lower().strip())

    if enable_cpu_offload:
        allegro_pipeline.enable_sequential_cpu_offload()

    out_video = allegro_pipeline(
        user_prompt, 
        negative_prompt=negative_prompt, 
        num_frames=88,
        height=720,
        width=1280,
        num_inference_steps=num_sampling_steps,
        guidance_scale=guidance_scale,
        max_sequence_length=512,
        generator=torch.Generator(device="cuda:0").manual_seed(seed)
    ).video[0]

    # Save video
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    imageio.mimwrite(save_path, out_video, fps=15, quality=8)

    return save_path


# Gradio interface function
def run_inference(user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload, progress=gr.Progress(track_tqdm=True)):
    save_path = "./output_videos/generated_video.mp4"
    result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload)
    return result_path

css="""
div#col-container{
    margin: 0 auto;
    max-width: 800px;
}
div#warning-ready {
    background-color: #ecfdf5;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
    color: #057857!important;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
div#warning-setgpu {
    background-color: #fff4eb;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
    color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
    color: #91230f;
}
div#warning-setgpu p.actions > a {
    display: inline-block;
    background: #1f1f23;
    border-radius: 40px;
    padding: 6px 24px;
    color: antiquewhite;
    text-decoration: none;
    font-weight: 600;
    font-size: 1.2em;
}
div#warning-setsleeptime {
    background-color: #fff4eb;
    padding: 10px 10px;
    margin: 0!important;
    color: #030303!important;
}
.custom-color {
    color: #030303 !important;
}
"""

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Allegro Video Generation")
        gr.Markdown("Generate a video based on a text prompt using the Allegro pipeline.")
        
        user_prompt=gr.Textbox(label="User Prompt")
        with gr.Row():
            guidance_scale=gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5)
            num_sampling_steps=gr.Slider(minimum=10, maximum=100, step=1, label="Number of Sampling Steps", value=20)
        with gr.Row():
            seed=gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42)
            enable_cpu_offload=gr.Checkbox(label="Enable CPU Offload", value=False, scale=1)
        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Attention: this Space need to be duplicated to work</h2>
                    <p class="main-message custom-color">
                        To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU.<br />
                        You'll be able to offload the model into CPU for less GPU memory cost (about 9.3G, compared to 27.5G if CPU offload is not enabled), but the inference time will increase significantly.
                    </p>
                    <p class="actions custom-color">
                        <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                    </p>
                </div>
            ''', elem_id="warning-duplicate")
            submit_btn = gr.Button("Generate Video", visible=False)
        else:
            if(is_gpu_associated):
                submit_btn = gr.Button("Generate Video", visible=True)
                top_description = gr.HTML(f'''
                    <div class="gr-prose">
                        <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                        You have successfully associated a GPU to this Space ๐ŸŽ‰</h2>
                        <p class="custom-color">
                            You can now generate a video! You will be billed by the minute from when you activated the GPU until when it is turned off.
                            You can offload the model into CPU for less GPU memory cost (about 9.3G, compared to 27.5G if CPU offload is not enabled), but the inference time will increase significantly.
                        </p> 
                    </div>
            ''', elem_id="warning-ready")
            else:
                top_description = gr.HTML(f'''
                        <div class="gr-prose">
                        <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                        You have successfully duplicated the Allegro Video Generation Space ๐ŸŽ‰</h2>
                        <p class="custom-color">There's only one step left before you can generate a video: we recommend to <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a L40S GPU</b> to it (via the Settings tab)</a>.
                        You will be billed by the minute from when you activate the GPU until when it is turned off.</p> 
                        <p class="actions custom-color">
                            <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">๐Ÿ”ฅ &nbsp; Set recommended GPU</a>
                        </p>
                        </div>
                ''', elem_id="warning-setgpu")
                submit_btn = gr.Button("Generate Video", visible=False)
                    
        video_output=gr.Video(label="Generated Video")

    submit_btn.click(
        fn=run_inference,
        inputs=[user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload],
        outputs=video_output
    )

# Launch the interface
demo.launch(show_error=True, show_api=False)