Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import requests | |
import numpy as np | |
import urllib.request | |
from urllib.request import urlretrieve | |
import PIL.Image | |
import torchvision.transforms as T | |
import fastai | |
from fastai.vision import * | |
from fastai.utils.mem import * | |
class FeatureLoss(nn.Module): | |
def __init__(self, m_feat, layer_ids, layer_wgts): | |
super().__init__() | |
self.m_feat = m_feat | |
self.loss_features = [self.m_feat[i] for i in layer_ids] | |
self.hooks = hook_outputs(self.loss_features, detach=False) | |
self.wgts = layer_wgts | |
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) | |
] + [f'gram_{i}' for i in range(len(layer_ids))] | |
def make_features(self, x, clone=False): | |
self.m_feat(x) | |
return [(o.clone() if clone else o) for o in self.hooks.stored] | |
def forward(self, input, target): | |
out_feat = self.make_features(target, clone=True) | |
in_feat = self.make_features(input) | |
self.feat_losses = [base_loss(input,target)] | |
self.feat_losses += [base_loss(f_in, f_out)*w | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.metrics = dict(zip(self.metric_names, self.feat_losses)) | |
return sum(self.feat_losses) | |
def __del__(self): self.hooks.remove() | |
MODEL_URL = "https://www.dropbox.com/s/1u7jg12zn35er9q/bt.pkl?dl=0" | |
urllib.request.urlretrieve(MODEL_URL, "bt.pkl") | |
path = Path(".") | |
learn=load_learner(path, 'bt.pkl') | |
urlretrieve("https://www.independent.ie/incoming/714c6/29308190.ece/AUTOCROP/h530/melanie-griffiths_2391378a.jpg","socce1.jpg") | |
urlretrieve("https://media.okmagazine.com/brand-img/IEPXUdkY7/0x0/2015/06/celebrity-tattoos-16-splash.jpg","socce2.jpg") | |
urlretrieve("https://newsmeter.in/wp-content/uploads/2020/06/Ajay-Devgn-Tattoo.jpg","basebal.jpg") | |
urlretrieve("https://akns-images.eonline.com/eol_images/Entire_Site/2014617/rs_600x600-140717150632-600-vin-los-tattoo-model.ls.71714_copy.jpg?fit=around%7C600:600&output-quality=90&crop=600:600;center,top","baseb.jpg") | |
sample_images = [["socce1.jpg"], | |
["socce2.jpg"], | |
["basebal.jpg"], | |
["baseb.jpg"]] | |
def predict(input): | |
size = input.size | |
img_t = T.ToTensor()(input) | |
img_fast = Image(img_t) | |
p,img_hr,b = learn.predict(img_fast) | |
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8) | |
img = PIL.Image.fromarray(x) | |
im = img.resize(size) | |
return im | |
gr_interface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="image", title='Skin-Deep',examples=sample_images).launch(); |