Spaces:
Running
Running
import os | |
import gradio as gr | |
from random import randint | |
from operator import itemgetter | |
import bisect | |
from all_models2 import tags_plus_models,models,models_plus_tags,find_warm_model_list | |
from datetime import datetime | |
from externalmod import gr_Interface_load | |
import asyncio | |
import os | |
from threading import RLock | |
lock = RLock() | |
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. | |
now2 = 0 | |
inference_timeout = 300 | |
MAX_SEED = 2**32-1 | |
nb_rep=2 | |
nb_mod_dif=20 | |
nb_models=nb_mod_dif*nb_rep | |
cache_image={} | |
cache_image_actu={} | |
def split_models(models,nb_models): | |
models_temp=[] | |
models_lis_temp=[] | |
i=0 | |
for m in models: | |
models_temp.append(m) | |
i=i+1 | |
if i%nb_models==0: | |
models_lis_temp.append(models_temp) | |
models_temp=[] | |
if len(models_temp)>1: | |
models_lis_temp.append(models_temp) | |
return models_lis_temp | |
def split_models_axb(models,a,b): | |
models_temp=[] | |
models_lis_temp=[] | |
i=0 | |
nb_models=b | |
for m in models: | |
for j in range(a): | |
models_temp.append(m) | |
i=i+1 | |
if i%nb_models==0: | |
models_lis_temp.append(models_temp) | |
models_temp=[] | |
if len(models_temp)>1: | |
models_lis_temp.append(models_temp) | |
return models_lis_temp | |
def split_models_8x3(models,nb_models): | |
models_temp=[] | |
models_lis_temp=[] | |
i=0 | |
nb_models_x3=8 | |
for m in models: | |
models_temp.append(m) | |
i=i+1 | |
if i%nb_models_x3==0: | |
models_lis_temp.append(models_temp+models_temp+models_temp) | |
models_temp=[] | |
if len(models_temp)>1: | |
models_lis_temp.append(models_temp+models_temp+models_temp) | |
return models_lis_temp | |
def construct_list_models(tags_plus_models,nb_rep,nb_mod_dif): | |
list_temp=[] | |
output=[] | |
for tag_plus_models in tags_plus_models: | |
list_temp=split_models_axb(tag_plus_models[2],nb_rep,nb_mod_dif) | |
list_temp2=[] | |
i=0 | |
for elem in list_temp: | |
list_temp2.append([f"{tag_plus_models[0]}_{i+1}/{len(list_temp)} ({len(elem)}) : {elem[0]} - {elem[len(elem)-1]}" ,elem]) | |
i+=1 | |
output.append([f"{tag_plus_models[0]} ({tag_plus_models[1]})",list_temp2]) | |
tag_plus_models[0]=f"{tag_plus_models[0]} ({tag_plus_models[1]})" | |
return output | |
models_test = [] | |
models_test = construct_list_models(tags_plus_models,nb_rep,nb_mod_dif) | |
def get_current_time(): | |
now = datetime.now() | |
now2 = now | |
current_time = now2.strftime("%Y-%m-%d %H:%M:%S") | |
kii = "" # ? | |
ki = f'{kii} {current_time}' | |
return ki | |
def load_fn_original(models): | |
global models_load | |
global num_models | |
global default_models | |
models_load = {} | |
num_models = len(models) | |
if num_models!=0: | |
default_models = models[:num_models] | |
else: | |
default_models = {} | |
for model in models: | |
if model not in models_load.keys(): | |
try: | |
m = gr.load(f'models/{model}') | |
except Exception as error: | |
m = gr.Interface(lambda txt: None, ['text'], ['image']) | |
print(error) | |
models_load.update({model: m}) | |
def load_fn(models): | |
global models_load | |
global num_models | |
global default_models | |
models_load = {} | |
num_models = len(models) | |
i=0 | |
if num_models!=0: | |
default_models = models[:num_models] | |
else: | |
default_models = {} | |
for model in models: | |
i+=1 | |
if i%50==0: | |
print("\n\n\n-------"+str(i)+'/'+str(len(models))+"-------\n\n\n") | |
if model not in models_load.keys(): | |
try: | |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) | |
except Exception as error: | |
m = gr.Interface(lambda txt: None, ['text'], ['image']) | |
print(error) | |
models_load.update({model: m}) | |
"""models = models_test[1]""" | |
#load_fn_original | |
load_fn(models) | |
"""models = {} | |
load_fn(models)""" | |
def extend_choices(choices): | |
return choices + (nb_models - len(choices)) * ['NA'] | |
"""return choices + (num_models - len(choices)) * ['NA']""" | |
def extend_choices_b(choices): | |
choices_plus = extend_choices(choices) | |
return [gr.Textbox(m, visible=False) for m in choices_plus] | |
def update_imgbox(choices): | |
choices_plus = extend_choices(choices) | |
return [gr.Image(None, label=m,interactive=False, visible=(m != 'NA'),show_share_button=False) for m in choices_plus] | |
def choice_group_a(group_model_choice): | |
return group_model_choice | |
def choice_group_b(group_model_choice): | |
choiceTemp =choice_group_a(group_model_choice) | |
choiceTemp = extend_choices(choiceTemp) | |
"""return [gr.Image(label=m, min_width=170, height=170) for m in choice]""" | |
return [gr.Image(None, label=m,interactive=False, visible=(m != 'NA'),show_share_button=False) for m in choiceTemp] | |
def choice_group_c(group_model_choice): | |
choiceTemp=choice_group_a(group_model_choice) | |
choiceTemp = extend_choices(choiceTemp) | |
return [gr.Textbox(m) for m in choiceTemp] | |
def choice_group_d(group_model_choice): | |
choiceTemp=choice_group_a(group_model_choice) | |
choiceTemp = extend_choices(choiceTemp) | |
return [gr.Textbox(choiceTemp[i*nb_rep], visible=(choiceTemp[i*nb_rep] != 'NA'),show_label=False) for i in range(nb_mod_dif)] | |
def choice_group_e(group_model_choice): | |
choiceTemp=choice_group_a(group_model_choice) | |
choiceTemp = extend_choices(choiceTemp) | |
return [gr.Column(visible=(choiceTemp[i*nb_rep] != 'NA')) for i in range(nb_mod_dif)] | |
def cutStrg(longStrg,start,end): | |
shortStrg='' | |
for i in range(end-start): | |
shortStrg+=longStrg[start+i] | |
return shortStrg | |
def aff_models_perso(txt_list_perso,nb_models=nb_models,models=models): | |
list_perso=[] | |
t1=True | |
start=txt_list_perso.find('\"') | |
if start!=-1: | |
while t1: | |
start+=1 | |
end=txt_list_perso.find('\"',start) | |
if end != -1: | |
txtTemp=cutStrg(txt_list_perso,start,end) | |
if txtTemp in models: | |
list_perso.append(cutStrg(txt_list_perso,start,end)) | |
else : | |
t1=False | |
start=txt_list_perso.find('\"',end+1) | |
if start==-1: | |
t1=False | |
if len(list_perso)>=nb_models: | |
t1=False | |
return list_perso | |
def aff_models_perso_b(txt_list_perso): | |
return choice_group_b(aff_models_perso(txt_list_perso)) | |
def aff_models_perso_c(txt_list_perso): | |
return choice_group_c(aff_models_perso(txt_list_perso)) | |
def tag_choice(group_tag_choice): | |
return gr.Dropdown(label="List of Models with the chosen Tag", show_label=True, choices=list(group_tag_choice) , interactive = True , filterable = False) | |
def test_pass(test): | |
if test==os.getenv('p'): | |
print("ok") | |
return gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test) , interactive = True) | |
else: | |
print("nop") | |
return gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True) | |
def test_pass_aff(test): | |
if test==os.getenv('p'): | |
return gr.Accordion( open=True, visible=True) ,gr.Row(visible=False) | |
else: | |
return gr.Accordion( open=True, visible=False) , gr.Row() | |
# https://huggingface.co/docs/api-inference/detailed_parameters | |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client | |
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout): | |
from pathlib import Path | |
kwargs = {} | |
if height is not None and height >= 256: kwargs["height"] = height | |
if width is not None and width >= 256: kwargs["width"] = width | |
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps | |
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg | |
if seed >= 0: kwargs["seed"] = seed | |
else: kwargs["seed"] = randint(1, MAX_SEED-1) | |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, | |
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) | |
await asyncio.sleep(0) | |
try: | |
result = await asyncio.wait_for(task, timeout=timeout) | |
except (Exception, asyncio.TimeoutError) as e: | |
print(e) | |
print(f"Task timed out: {model_str}") | |
if not task.done(): task.cancel() | |
result = None | |
if task.done() and result is not None: | |
with lock: | |
png_path = "image.png" | |
result.save(png_path) | |
image = str(Path(png_path).resolve()) | |
return image | |
return None | |
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1): | |
if model_str == 'NA': | |
return None | |
try: | |
loop = asyncio.new_event_loop() | |
result = loop.run_until_complete(infer(model_str, prompt, nprompt, | |
height, width, steps, cfg, seed, inference_timeout)) | |
except (Exception, asyncio.CancelledError) as e: | |
print(e) | |
print(f"Task aborted: {model_str}") | |
result = None | |
finally: | |
loop.close() | |
return result | |
def gen_fn_original(model_str, prompt): | |
if model_str == 'NA': | |
return None | |
noise = str(randint(0, 9999)) | |
try : | |
m=models_load[model_str](f'{prompt} {noise}') | |
except Exception as error : | |
print("error : " + model_str) | |
print(error) | |
m=False | |
return m | |
def add_gallery(image, model_str, gallery): | |
if gallery is None: gallery = [] | |
#with lock: | |
if image is not None: gallery.append((image, model_str)) | |
return gallery | |
def reset_gallery(gallery): | |
return add_gallery(None,"",[]) | |
def load_gallery(gallery,id): | |
gallery = reset_gallery(gallery) | |
for c in cache_image[f"{id}"]: | |
gallery=add_gallery(c[0],c[1],gallery) | |
return gallery | |
def load_gallery_sorted(gallery,id): | |
gallery = reset_gallery(gallery) | |
for c in sorted(cache_image[f"{id}"], key=itemgetter(1)): | |
gallery=add_gallery(c[0],c[1],gallery) | |
return gallery | |
def load_gallery_actu(gallery,id): | |
gallery = reset_gallery(gallery) | |
for c in cache_image_actu[f"{id}"]: | |
gallery=add_gallery(c[0],c[1],gallery) | |
return gallery | |
def add_cache_image(image, model_str,id,cache_image=cache_image): | |
if image is not None: | |
cache_image[f"{id}"].append((image,model_str)) | |
#cache_image=sorted(cache_image, key=itemgetter(1)) | |
return | |
def add_cache_image_actu(image, model_str,id,cache_image_actu=cache_image_actu): | |
if image is not None: | |
bisect.insort(cache_image_actu[f"{id}"],(image, model_str), key=itemgetter(1)) | |
#cache_image_actu=sorted(cache_image_actu, key=itemgetter(1)) | |
return | |
def reset_cache_image(id,cache_image=cache_image): | |
cache_image[f"{id}"].clear() | |
return | |
def reset_cache_image_actu(id,cache_image_actu=cache_image_actu): | |
cache_image_actu[f"{id}"].clear() | |
return | |
def reset_cache_image_all_sessions(cache_image=cache_image,cache_image_actu=cache_image_actu): | |
for key, listT in cache_image.items(): | |
listT.clear() | |
for key, listT in cache_image_actu.items(): | |
listT.clear() | |
return | |
def set_session(id): | |
if id==0: | |
randTemp=randint(1,MAX_SEED) | |
cache_image[f"{randTemp}"]=[] | |
cache_image_actu[f"{randTemp}"]=[] | |
return gr.Number(visible=False,value=randTemp) | |
else : | |
return id | |
def print_info_sessions(): | |
lenTot=0 | |
print("###################################") | |
print("number of sessions : "+str(len(cache_image))) | |
for key, listT in cache_image.items(): | |
print("session "+key+" : "+str(len(listT))) | |
lenTot+=len(listT) | |
print("images total = "+str(lenTot)) | |
print("###################################") | |
return | |
def disp_models(group_model_choice,nb_rep=nb_rep): | |
listTemp=[] | |
strTemp='\n' | |
i=0 | |
for m in group_model_choice: | |
if m not in listTemp: | |
listTemp.append(m) | |
for m in listTemp: | |
i+=1 | |
strTemp+="\"" + m + "\",\n" | |
if i%(8/nb_rep)==0: | |
strTemp+="\n" | |
return gr.Textbox(label="models",value=strTemp) | |
def search_models(str_search,tags_plus_models=tags_plus_models): | |
output1="\n" | |
output2="" | |
for m in tags_plus_models[0][2]: | |
if m.find(str_search)!=-1: | |
output1+="\"" + m + "\",\n" | |
outputPlus="\n From tags : \n\n" | |
for tag_plus_models in tags_plus_models: | |
if str_search.lower() == tag_plus_models[0].lower() and str_search!="": | |
for m in tag_plus_models[2]: | |
output2+="\"" + m + "\",\n" | |
if output2 != "": | |
output=output1+outputPlus+output2 | |
else : | |
output=output1 | |
return gr.Textbox(label="out",value=output) | |
def search_info(txt_search_info,models_plus_tags=models_plus_tags): | |
outputList=[] | |
if txt_search_info.find("\"")!=-1: | |
start=txt_search_info.find("\"")+1 | |
end=txt_search_info.find("\"",start) | |
m_name=cutStrg(txt_search_info,start,end) | |
else : | |
m_name = txt_search_info | |
for m in models_plus_tags: | |
if m_name == m[0]: | |
outputList=m[1] | |
if len(outputList)==0: | |
outputList.append("Model Not Find") | |
return gr.Textbox(label="out",value=outputList) | |
def add_in_blacklist(bl,model): | |
return gr.Textbox(bl+(f"\"{model}\",\n")) | |
def add_in_fav(fav,model): | |
return gr.Textbox(fav+(f"\"{model}\",\n")) | |
def rand_from_all_all_models(): | |
if len(tags_plus_models[0][2])<nb_mod_dif: | |
return choice_group_c(tags_plus_models[0][2]) | |
else: | |
result=[] | |
list_index_temp=[] | |
for i in range(len(tags_plus_models[0][2])): | |
list_index_temp.append(i) | |
for i in range(nb_mod_dif): | |
index_temp=randint(1,len(list_index_temp))-1 | |
for j in range(nb_rep): | |
result.append(gr.Textbox(tags_plus_models[0][2][list_index_temp[index_temp]])) | |
list_index_temp.remove(list_index_temp[index_temp]) | |
return result | |
def rand_from_tag_all_models(index): | |
if len(tags_plus_models[index][2])<nb_mod_dif: | |
return choice_group_c(models_test[index][1][0][1]) | |
else: | |
result=[] | |
list_index_temp=[] | |
for i in range(len(tags_plus_models[index][2])): | |
list_index_temp.append(i) | |
for i in range(nb_mod_dif): | |
index_temp=randint(1,len(list_index_temp))-1 | |
for j in range(nb_rep): | |
result.append(gr.Textbox(tags_plus_models[index][2][list_index_temp[index_temp]])) | |
list_index_temp.remove(list_index_temp[index_temp]) | |
return result | |
def find_index_tag(group_tag_choice): | |
for i in (range(len(models_test)-1)): | |
if models_test[i][1]==group_tag_choice: | |
return gr.Number(i) | |
return gr.Number(0) | |
def fonc_search_warm_models(tag,b_format): | |
if tag == "": | |
tagT=["stable-diffusion-xl"] | |
else: | |
tagT=["stable-diffusion-xl",tag] | |
models_temp , models_plus_tags_temp = find_warm_model_list("John6666", tagT, "", "last_modified", 10000) | |
s="" | |
if b_format: | |
rep=nb_rep | |
else: | |
rep=1 | |
for m in models_temp: | |
if m in models: | |
for i in range(rep): | |
s+=f"\"{m}\",\n" | |
return gr.Textbox(s) | |
def ratio_chosen(choice_ratio,width,height): | |
if choice_ratio == [None,None]: | |
return width , height | |
else : | |
return gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[0]), gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[1]) | |
list_ratios=[["None",[None,None]], | |
["4:1 (2048 x 512)",[2048,512]], | |
["12:5 (1536 x 640)",[1536,640]], | |
["~16:9 (1344 x 768)",[1344,768]], | |
["~3:2 (1216 x 832)",[1216,832]], | |
["~4:3 (1152 x 896)",[1152,896]], | |
["1:1 (1024 x 1024)",[1024,1024]], | |
["~3:4 (896 x 1152)",[896,1152]], | |
["~2:3 (832 x 1216)",[832,1216]], | |
["~9:16 (768 x 1344)",[768,1344]], | |
["5:12 (640 x 1536)",[640,1536]], | |
["1:4 (512 x 2048)",[512,2048]]] | |
def make_me(): | |
# with gr.Tab('The Dream'): | |
with gr.Row(): | |
#txt_input = gr.Textbox(lines=3, width=300, max_height=100) | |
#txt_input = gr.Textbox(label='Your prompt:', lines=3, width=300, max_height=100) | |
with gr.Column(scale=4): | |
with gr.Group(): | |
txt_input = gr.Textbox(label='Your prompt:', lines=3) | |
with gr.Accordion("Advanced", open=False, visible=True): | |
neg_input = gr.Textbox(label='Negative prompt:', lines=1) | |
with gr.Row(): | |
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
with gr.Row(): | |
choice_ratio = gr.Dropdown(label="Ratio Width/Height", | |
info="OverWrite Width and Height (W*H<1024*1024)", | |
show_label=True, choices=list(list_ratios) , interactive = True, value=list_ratios[0][1]) | |
choice_ratio.change(ratio_chosen,[choice_ratio,width,height],[width,height]) | |
with gr.Row(): | |
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) | |
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) | |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) | |
#gen_button = gr.Button('Generate images', width=150, height=30) | |
#stop_button = gr.Button('Stop', variant='secondary', interactive=False, width=150, height=30) | |
gen_button = gr.Button('Generate images', scale=3) | |
stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1) | |
gen_button.click(lambda: gr.update(interactive=True), None, stop_button) | |
#gr.HTML(""" | |
#<div style="text-align: center; max-width: 100%; margin: 0 auto;"> | |
# <body> | |
# </body> | |
#</div> | |
#""") | |
with gr.Row() as block_images: | |
choices=[models_test[0][1][0][1][0]] | |
output = [] | |
current_models = [] | |
#text_disp_models = [] | |
block_images_liste = [] | |
block_images_options_liste = [] | |
button_rand_from_tag=[] | |
button_rand_from_all=[] | |
button_rand_from_fav=[] | |
button_blacklisted=[] | |
button_favorites=[] | |
choices_plus = extend_choices(choices) | |
for i in range(nb_mod_dif): | |
with gr.Column(visible=(choices_plus[i*nb_rep] != 'NA')) as block_Temp : | |
block_images_liste.append(block_Temp) | |
with gr.Group(): | |
with gr.Row(): | |
for j in range(nb_rep): | |
output.append(gr.Image(None, label=choices_plus[i*nb_rep+j],interactive=False, | |
visible=(choices_plus[i*nb_rep+j] != 'NA'),show_label=False,show_share_button=False)) | |
for j in range(nb_rep): | |
current_models.append(gr.Textbox(choices_plus[i*nb_rep+j], visible=(j==0),show_label=False)) | |
#text_disp_models.append(gr.Textbox(choices_plus[i*nb_rep], visible=(choices_plus[i*nb_rep] != 'NA'),show_label=False)) | |
with gr.Row(visible=False) as block_Temp: | |
block_images_options_liste.append(block_Temp) | |
button_rand_from_tag.append(gr.Button("Random\nfrom tag")) | |
button_rand_from_all.append(gr.Button("Random\nfrom all")) | |
button_rand_from_fav.append(gr.Button("Random\nfrom fav")) | |
button_blacklisted.append(gr.Button("put in\nblacklist")) | |
button_favorites.append(gr.Button("put in\nfavorites")) | |
#output = update_imgbox([choices[0]]) | |
#current_models = extend_choices_b([choices[0]]) | |
for m, o in zip(current_models, output): | |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, | |
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o]) | |
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event]) | |
with gr.Row() as blockPass: | |
txt_input_p = gr.Textbox(label="Pass", lines=1) | |
test_button = gr.Button(' ') | |
with gr.Accordion( open=True, visible=False) as stuffs: | |
with gr.Accordion("Advanced",open=False): | |
images_options=gr.Checkbox(False,label="Images Options") | |
images_options.change(lambda x:[gr.Row(visible=x) for b in range(nb_mod_dif)],[images_options],block_images_options_liste) | |
blacklist_perso=gr.Textbox(label="Blacklist perso") | |
fav_perso=gr.Textbox(label="Fav perso") | |
button_rand_from_tag_all_models=gr.Button("Random all models from tag") | |
button_rand_from_all_all_models=gr.Button("Random all models from all") | |
button_rand_from_fav_all_models=gr.Button("Random all models from fav") | |
with gr.Accordion("Warm models",open=False): | |
with gr.Row(): | |
text_warm_models=gr.Textbox("",label="list of warm model") | |
with gr.Column(): | |
text_tag_warm_models=gr.Textbox(lines=1) | |
bool_format_models=gr.Checkbox(label="Format list",value=False) | |
button_search_warm_models=gr.Button("search warm models") | |
button_search_warm_models.click(fonc_search_warm_models,[text_tag_warm_models,bool_format_models],[text_warm_models]) | |
button_load_warm_models = gr.Button('Load') | |
button_load_warm_models.click(aff_models_perso_b,text_warm_models,output) | |
button_load_warm_models.click(aff_models_perso_c,text_warm_models,current_models) | |
with gr.Accordion("Gallery",open=False): | |
with gr.Row(): | |
#global cache_image | |
#global cache_image_actu | |
id_session=gr.Number(visible=False,value=0) | |
gen_button.click(set_session, id_session, id_session) | |
cache_image[f"{id_session.value}"]=[] | |
cache_image_actu[f"{id_session.value}"]=[] | |
with gr.Column(): | |
b11 = gr.Button('Load Galerry Actu') | |
b12 = gr.Button('Load Galerry All') | |
b13 = gr.Button('Load Galerry All (sorted)') | |
gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery", | |
interactive=False, show_share_button=True, container=True, format="png", | |
preview=True, object_fit="cover",columns=4,rows=4) | |
with gr.Column(): | |
b21 = gr.Button('Reset Gallery') | |
b22 = gr.Button('Reset Gallery All') | |
b23 = gr.Button('Reset All Sessions') | |
b24 = gr.Button('print info sessions') | |
b11.click(load_gallery_actu,[gallery,id_session],gallery) | |
b12.click(load_gallery,[gallery,id_session],gallery) | |
b13.click(load_gallery_sorted,[gallery,id_session],gallery) | |
b21.click(reset_gallery,[gallery],gallery) | |
b22.click(reset_cache_image,[id_session],gallery) | |
b23.click(reset_cache_image_all_sessions,[],[]) | |
b24.click(print_info_sessions,[],[]) | |
for m, o in zip(current_models, output): | |
#o.change(add_gallery, [o, m, gallery], [gallery]) | |
o.change(add_cache_image,[o,m,id_session],[]) | |
o.change(add_cache_image_actu,[o,m,id_session],[]) | |
gen_button.click(reset_cache_image_actu, [id_session], []) | |
gen_button.click(lambda id:gr.Button('Load Galerry All ('+str(len(cache_image[f"{id}"]))+")"), [id_session], [b12]) | |
with gr.Group(): | |
with gr.Row(): | |
#group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True) | |
group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test), interactive = True,value=models_test[0][1]) | |
#group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test), interactive = True) | |
index_tag=gr.Number(0,visible=False) | |
with gr.Row(): | |
group_model_choice = gr.Dropdown(label="List of Models with the chosen Tag", show_label=True, choices=list([]), interactive = True) | |
group_model_choice.change(choice_group_b,group_model_choice,output) | |
group_model_choice.change(choice_group_c,group_model_choice,current_models) | |
#group_model_choice.change(choice_group_d,group_model_choice,text_disp_models) | |
group_model_choice.change(choice_group_e,group_model_choice,block_images_liste) | |
group_tag_choice.change(tag_choice,group_tag_choice,group_model_choice) | |
group_tag_choice.change(find_index_tag,group_tag_choice,index_tag) | |
with gr.Accordion("Display/Load Models") : | |
with gr.Row(): | |
txt_list_models=gr.Textbox(label="Models Actu",value="") | |
group_model_choice.change(disp_models,group_model_choice,txt_list_models) | |
with gr.Column(): | |
txt_list_perso = gr.Textbox(label='List Models Perso to Load') | |
button_list_perso = gr.Button('Load') | |
button_list_perso.click(aff_models_perso_b,txt_list_perso,output) | |
button_list_perso.click(aff_models_perso_c,txt_list_perso,current_models) | |
with gr.Row(): | |
txt_search = gr.Textbox(label='Search in') | |
txt_output_search = gr.Textbox(label='Search out') | |
button_search = gr.Button('Research') | |
button_search.click(search_models,txt_search,txt_output_search) | |
with gr.Row(): | |
txt_search_info = gr.Textbox(label='Search info in') | |
txt_output_search_info = gr.Textbox(label='Search info out') | |
button_search_info = gr.Button('Research info') | |
button_search_info.click(search_info,txt_search_info,txt_output_search_info) | |
with gr.Row(): | |
test_button.click(test_pass_aff,txt_input_p,[stuffs,blockPass]) | |
#test_button.click(test_pass,txt_input_p,group_tag_choice) | |
#text_disp_models = [] | |
#button_rand_from_tag=[] | |
#button_rand_from_all=[] | |
button_rand_from_all_all_models.click(rand_from_all_all_models,[],current_models) | |
button_rand_from_tag_all_models.click(rand_from_tag_all_models,index_tag,current_models) | |
for i in range(nb_mod_dif): | |
####################################################################################################################### | |
#button_rand_from_tag.click() | |
#button_rand_from_all.click() | |
#button_rand_from_fav.click() | |
button_blacklisted[i].click(add_in_blacklist,[blacklist_perso,current_models[i*nb_rep]],blacklist_perso) | |
button_favorites[i].click(add_in_fav,[fav_perso,current_models[i*nb_rep]],fav_perso) | |
gr.HTML(""" | |
<div class="footer"> | |
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier! | |
</p> | |
""") | |
js_code = """ | |
console.log('ghgh'); | |
""" | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", fill_width=True, css="div.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}") as demo: | |
gr.Markdown("<script>" + js_code + "</script>") | |
make_me() | |
# https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance | |
#demo.queue(concurrency_count=999) # concurrency_count is deprecated in 4.x | |
demo.queue(default_concurrency_limit=200, max_size=200) | |
demo.launch(max_threads=400) |