Spaces:
Running
Running
import re | |
import cv2 as cv | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import copy | |
import pandas as pd | |
import os | |
import math | |
import time | |
from imutils.object_detection import non_max_suppression | |
from sklearn.mixture import GaussianMixture | |
from sklearn.cluster import KMeans | |
import xgboost as xgb | |
from sklearn.linear_model import LinearRegression | |
from sklearn.neural_network import MLPRegressor | |
from sklearn.datasets import make_regression | |
from sklearn.model_selection import train_test_split | |
from scipy.stats import norm | |
from sklearn.neighbors import KernelDensity | |
from PIL import Image | |
from io import BytesIO | |
from pytesseract import pytesseract | |
from gensim import corpora, models, similarities | |
import nltk | |
from nltk.corpus import stopwords | |
import torch | |
from transformers import AutoModel, AutoTokenizer | |
from sentence_transformers import SentenceTransformer | |
General_Category = { | |
'Potatoes / Vegetables / Fruit': ['Potatoes / Vegetables / Fruit'], | |
'Chemical products': ['Chemical products'], | |
'Photo / Film / Optical items': ['Photo / Film / Optical items'], | |
'Catering industry': ['Catering industry'], | |
'Industrial products other': ['Industrial products other'], | |
'Media': ['Media'], | |
'Real estate': ['Real estate'], | |
'Government': ['Government'], | |
'Personnel advertisements': ['Personnel advertisements'], | |
'Cars / Commercial vehicles': ['Cars / Commercial vehicles'], | |
'Cleaning products': ['Cleaning products'], | |
'Retail': ['Retail'], | |
'Fragrances': ['Fragrances'], | |
'Footwear / Leather goods': ['Footwear / Leather goods'], | |
'Software / Automation': ['Software / Automation'], | |
'Telecommunication equipment': ['Telecommunication equipment'], | |
'Tourism': ['Tourism'], | |
'Transport/Communication companies': ['Transport/Communication companies'], | |
'Transport services': ['Transport services'], | |
'Insurances': ['Insurances'], | |
'Meat / Fish / Poultry': ['Meat / Fish / Poultry'], | |
'Detergents': ['Detergents'], | |
'Foods General': ['Foods general', 'Bread / Banquet', 'Chocolate / Confectionery', 'Soup / Soup products', 'Edible fats', 'Sugar / Herbs / Spices', 'Dairy'], | |
'Other services': ['Education', 'Other services'], | |
'Banks and Financial Services': ['Banks / Financing', 'Financial services other'], | |
'Office Products': ['Office equipment', 'Office automation hardware', 'Office products'], | |
'Household Items': ['Household items', 'Small household equipment'], | |
'Non-alcoholic beverages': ['Non-alcoholic beverages', 'Coffee/Tea'], | |
'Hair, Oral and Personal Care': ['Skin care', 'Hair care', 'Oral care', 'Personal care electric'], | |
'Fashion and Clothing': ['Outerwear', 'Underwear / Sleepwear'], | |
'Other products and Services': ['Pet foods', 'Other products and services', 'Other advertisements'], | |
'Paper products': ['Paper products', 'Paper products body care'], | |
'Alcohol and Other Stimulants': ['Weak alcoholic drinks', 'Strong alcoholic drinks', 'Tobacco'], | |
'Medicines': ['Medicines', 'Bandages'], | |
'Recreation and Leisure': ['Recreation', 'Leisure items / Hobby items'], | |
'Electronics': ['Kitchen appliances', 'Brown goods (Sound and video Electronics)'], | |
'Home Furnishings': ['Home furnishings', 'Home upholstery', 'Home textiles'], | |
'Products for Business Use': ['Products for business use', 'Other business services']} | |
#Saliency Map: Itti-Koch | |
def Itti_Saliency(img, scale_final=4): | |
r = copy.copy(img[:,:,0].astype('float64')) | |
g = copy.copy(img[:,:,1].astype('float64')) | |
b = copy.copy(img[:,:,2].astype('float64')) | |
#Intensity | |
I = (r+g+b)/3 | |
dim1_img, dim2_img = np.shape(I) | |
#Normalization of r,g,b | |
mask1 = I >= 0.1*np.max(I) | |
mask2 = I < 0.1*np.max(I) | |
r[mask1] = r[mask1]/I[mask1] | |
r[mask2] = 0 | |
g[mask1] = g[mask1]/I[mask1] | |
g[mask2] = 0 | |
b[mask1] = b[mask1]/I[mask1] | |
b[mask2] = 0 | |
#Fine-tuned Color Channels | |
R = r-(g+b)/2 | |
G = g-(r+b)/2 | |
B = b-(r+g)/2 | |
Y = (r+g)/2-np.abs(r-g)/2-b | |
#Intensity Feature Maps | |
I_pyr = [I] | |
R_pyr = [R] | |
G_pyr = [G] | |
B_pyr = [B] | |
Y_pyr = [Y] | |
I_maps = [] | |
RG_maps = [] | |
BY_maps = [] | |
for i in range(8): | |
I_pyr.append(cv.pyrDown(I_pyr[i])) | |
R_pyr.append(cv.pyrDown(R_pyr[i])) | |
G_pyr.append(cv.pyrDown(G_pyr[i])) | |
B_pyr.append(cv.pyrDown(B_pyr[i])) | |
Y_pyr.append(cv.pyrDown(Y_pyr[i])) | |
for c in (2,3,4): | |
for d in (3,4): | |
shape = (np.shape(I_pyr[c])[1],np.shape(I_pyr[c])[0]) | |
temp = cv.resize(I_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) | |
temp_G = cv.resize(G_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) | |
temp_R = cv.resize(R_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) | |
temp_B = cv.resize(B_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) | |
temp_Y = cv.resize(Y_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) | |
I_maps.append(np.abs(I_pyr[c]-temp)) | |
RG_maps.append(np.abs((R_pyr[c]-G_pyr[c])-(temp_G-temp_R))) | |
BY_maps.append(np.abs((B_pyr[c]-Y_pyr[c])-(temp_Y-temp_B))) | |
g_kernel = cv.getGaborKernel((5, 5), 2.0, np.pi/4, 10.0, 0.5, 0) | |
O_maps = [] | |
for theta in (0, np.pi/4, np.pi/2, 3*np.pi/4): | |
O_pyr = [I] | |
for i in range(8): | |
filtered = cv.filter2D(I_pyr[i], ddepth=-1, kernel=g_kernel) | |
dim1,dim2 = np.shape(filtered) | |
O_pyr.append(cv.resize(filtered, (dim1//2,dim2//2), interpolation=cv.INTER_LINEAR)) | |
for c in (2,3,4): | |
for d in (3,4): | |
shape = (np.shape(O_pyr[c])[1],np.shape(O_pyr[c])[0]) | |
temp = cv.resize(O_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) | |
O_maps.append(np.abs(O_pyr[c]-temp)) | |
S = 0 | |
M = 10 | |
scaling = 2**scale_final | |
for I_map in I_maps: | |
temp = normalization(I_map,M) | |
temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR) | |
S += temp | |
for i in range(len(RG_maps)): | |
temp = normalization(RG_maps[i],M)+normalization(BY_maps[i],M) | |
temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR) | |
S += temp | |
for O_map in O_maps: | |
temp = normalization(O_map,M) | |
temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR) | |
S += temp | |
S = 1/3*S | |
return S | |
#Saliency map helper | |
def normalization(X, M): | |
max_val = np.max(X) | |
#first step | |
X = X*M/max_val | |
#second step | |
mask = X < M | |
m_bar = np.mean(X[mask]) | |
#third step | |
return (M-m_bar)**2*X | |
#For K-Means and Saliency Features | |
def salience_matrix_conv(sal_mat,threshold,num_clusters,enhance_rate=2): | |
norm_sal = sal_mat**enhance_rate/np.max(sal_mat**enhance_rate) | |
mask = norm_sal < threshold | |
norm_sal[mask] = 0 | |
[dim1,dim2] = np.shape(sal_mat) | |
mask = norm_sal >= threshold | |
vecs = [] | |
for i in range(dim1): | |
for j in range(dim2): | |
if norm_sal[i,j] == 0: | |
continue | |
else: | |
vecs.append([i/dim1,j/dim2,norm_sal[i,j]]) | |
vecs = np.array(vecs) | |
km = KMeans(n_clusters=num_clusters, random_state=0, n_init=10).fit(vecs) | |
return (vecs, km) | |
def Center(X): | |
ws = X[:,2].reshape(len(X[:,2]),1) | |
ws = ws/np.sum(ws) | |
loc = X[:,0:2] | |
return np.sum(loc*ws,axis=0) | |
def Cov_est(X, center): | |
n = X.shape[0] | |
loc = X[:,0:2] | |
return np.matmul((loc-center).T,(loc-center))/n | |
def Renyi_Entropy(P): | |
n = len(P) | |
Q = np.ones_like(P)/n | |
return np.sum(P*np.log(P/Q))#-2*np.log(np.sum(np.sqrt(P*Q))) | |
def img_clusters(num_clusters, img, kmeans_labels, k_means_centers, vecs, show_cluster=False): | |
clusters = [] | |
labels = [] | |
scores = [] | |
widths = [] | |
pred = kmeans_labels | |
for i in range(num_clusters): | |
clusters.append(np.zeros_like(img)) | |
labels.append(pred == i) | |
for k in range(num_clusters): | |
for item in vecs[labels[k]]: | |
i,j,val = item | |
i = int(i); j = int(j) | |
clusters[k][i,j] = val | |
scores.append(np.sum(clusters[k])) | |
widths.append(np.linalg.det(Cov_est(vecs[labels[k]],Center(vecs[labels[k]])))) | |
ind = np.argsort(-1*np.array(scores)) | |
scores = np.array(scores)[ind] | |
widths = np.array(widths)[ind] | |
perc_S = np.array(scores)/sum(scores) | |
D = 1/(Renyi_Entropy(perc_S)+0.001) | |
if show_cluster: | |
fig,ax = plt.subplots(1,num_clusters) | |
for i in range(num_clusters): | |
ax[i].imshow(clusters[i]) | |
ax[i].axis('off') | |
plt.savefig("clusters.png", bbox_inches='tight') | |
plt.show() | |
return (clusters,perc_S,widths,D) | |
def weights_pages(ad_size, num_clusters): | |
if ad_size == '1g': | |
return np.concatenate((np.ones(num_clusters),0.2*np.ones(num_clusters))) | |
elif ad_size == '1w': | |
return np.ones(2*num_clusters) | |
elif ad_size == 'hw': | |
return np.concatenate((0.2*np.ones(num_clusters),np.ones(num_clusters))) | |
else: | |
return 0.5*np.ones(2*num_clusters) | |
def ad_loc_indicator(ad_size): | |
if ad_size == '1g': | |
return 0 | |
elif ad_size == '1w': | |
return 2 | |
elif ad_size == 'hw': | |
return 1 | |
else: | |
return 3 | |
def full_weights(ad_sizes, num_clusters): | |
out = [] | |
for ad_size in ad_sizes: | |
out.append(weights_pages(ad_size,num_clusters)) | |
return np.array(out) | |
def ad_loc_indicator_full(ad_sizes): | |
out = [] | |
for ad_size in ad_sizes: | |
out.append(ad_loc_indicator(ad_size)) | |
return np.array(out) | |
def filesize_individual(img_path): | |
if type(img_path) == str: | |
out = os.path.getsize(img_path)/1000 | |
else: | |
img = Image.fromarray(img_path) | |
img_file = BytesIO() | |
img.save(img_file, 'jpeg') | |
out = img_file.tell() | |
return out | |
def KL_dist(P,Q): | |
return np.sum(P*(np.log(P)-np.log(Q)),axis=1) | |
def KL_score(y_pred,y_test): | |
kde_pred = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_pred.reshape(-1, 1)) | |
log_dens_pred = kde_pred.score_samples(y_pred.reshape(-1, 1)) | |
x = np.linspace(-10,10,num=100) | |
kde_true = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_test.reshape(-1, 1)) | |
log_dens_true = kde_true.score_samples(y_test.reshape(-1, 1)) | |
plt.plot(x,np.exp(kde_pred.score_samples(x.reshape(-1, 1))),label='pred') | |
plt.plot(x,np.exp(kde_true.score_samples(x.reshape(-1, 1))),label='true') | |
plt.legend() | |
plt.show() | |
return np.sum(np.exp(log_dens_pred)*(log_dens_pred-log_dens_true)) | |
def medoid(X_in, d): | |
temp = [] | |
temp_d = [] | |
for item in X_in: | |
temp.append(np.sum(d(X_in-item))) | |
temp_d.append(np.sum(d(X_in-item), axis=1)) | |
return (np.argmin(temp), temp_d[np.argmin(temp)]) | |
def sqr_dist(x): | |
return np.multiply(x,x) | |
def data_normalize(X_train,X_test): | |
num_train = X_train.shape[0] | |
m_train = np.sum(X_train,axis=0)/num_train | |
s_train = np.sqrt(np.sum((X_train-m_train)**2,axis=0)) | |
X_train_transf = (X_train-m_train)/s_train | |
X_test_transf = (X_test-m_train)/s_train | |
return X_train_transf, X_test_transf | |
def typ_cat(medoids, X_test, category, d): | |
ind_temp = np.arange(len(category)) | |
ind_interest = ind_temp[np.array(category)==1][0] | |
typ = np.sum(d(X_test-medoids[ind_interest]), axis=1) | |
return typ | |
#EAST Text Detection | |
def text_detection_east(image, text_detection_model_path): | |
orig = image.copy() | |
(H, W) = image.shape[:2] | |
(newW, newH) = (W, H) | |
rW = W / float(newW) | |
rH = H / float(newH) | |
# resize the image and grab the new image dimensions | |
image = cv.resize(image, (newW, newH)) | |
(H, W) = image.shape[:2] | |
# define the two output layer names for the EAST detector model that | |
# we are interested -- the first is the output probabilities and the | |
# second can be used to derive the bounding box coordinates of text | |
layerNames = [ | |
"feature_fusion/Conv_7/Sigmoid", | |
"feature_fusion/concat_3"] | |
# load the pre-trained EAST text detector | |
print("[INFO] loading EAST text detector...") | |
net = cv.dnn.readNet(text_detection_model_path) | |
# construct a blob from the image and then perform a forward pass of | |
# the model to obtain the two output layer sets | |
blob = cv.dnn.blobFromImage(image, 1.0, (W, H), | |
(123.68, 116.78, 103.94), swapRB=True, crop=False) | |
start = time.time() | |
net.setInput(blob) | |
(scores, geometry) = net.forward(layerNames) | |
end = time.time() | |
# show timing information on text prediction | |
print("[INFO] text detection took {:.6f} seconds".format(end - start)) | |
# grab the number of rows and columns from the scores volume, then | |
# initialize our set of bounding box rectangles and corresponding | |
# confidence scores | |
(numRows, numCols) = scores.shape[2:4] | |
rects = [] | |
confidences = [] | |
# loop over the number of rows | |
for y in range(0, numRows): | |
# extract the scores (probabilities), followed by the geometrical | |
# data used to derive potential bounding box coordinates that | |
# surround text | |
scoresData = scores[0, 0, y] | |
xData0 = geometry[0, 0, y] | |
xData1 = geometry[0, 1, y] | |
xData2 = geometry[0, 2, y] | |
xData3 = geometry[0, 3, y] | |
anglesData = geometry[0, 4, y] | |
# loop over the number of columns | |
for x in range(0, numCols): | |
# if our score does not have sufficient probability, ignore it | |
if scoresData[x] < 0.5: | |
continue | |
# compute the offset factor as our resulting feature maps will | |
# be 4x smaller than the input image | |
(offsetX, offsetY) = (x * 4.0, y * 4.0) | |
# extract the rotation angle for the prediction and then | |
# compute the sin and cosine | |
angle = anglesData[x] | |
cos = np.cos(angle) | |
sin = np.sin(angle) | |
# use the geometry volume to derive the width and height of | |
# the bounding box | |
h = xData0[x] + xData2[x] | |
w = xData1[x] + xData3[x] | |
# compute both the starting and ending (x, y)-coordinates for | |
# the text prediction bounding box | |
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) | |
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) | |
startX = int(endX - w) | |
startY = int(endY - h) | |
# add the bounding box coordinates and probability score to | |
# our respective lists | |
rects.append((startX, startY, endX, endY)) | |
confidences.append(scoresData[x]) | |
# apply non-maxima suppression to suppress weak, overlapping bounding | |
# boxes | |
boxes = non_max_suppression(np.array(rects), probs=confidences) | |
count = 0 | |
for (x1, y1, x2, y2) in boxes: | |
count += 1 | |
return count | |
#Texts and Objects | |
def center_crop(img, dim): | |
"""Returns center cropped image | |
Args: | |
img: image to be center cropped | |
dim: dimensions (width, height) to be cropped | |
""" | |
width, height = img.shape[1], img.shape[0] | |
# process crop width and height for max available dimension | |
crop_width = dim[0] if dim[0]<img.shape[1] else img.shape[1] | |
crop_height = dim[1] if dim[1]<img.shape[0] else img.shape[0] | |
mid_x, mid_y = int(width/2), int(height/2) | |
cw2, ch2 = int(crop_width/2), int(crop_height/2) | |
crop_img = img[mid_y-ch2:mid_y+ch2, mid_x-cw2:mid_x+cw2] | |
return crop_img | |
def ad_object_detection(model, image, crop_dim=600): | |
final_output = [] | |
results = model(np.moveaxis(center_crop(image,(crop_dim,crop_dim)),-1,0)) | |
results_all = model(np.moveaxis(image,-1,0)) | |
table = results.pandas().xyxy[0] | |
table_all = results_all.pandas().xyxy[0] | |
ad_objs = {} | |
# xmin ymin xmax ymax confidence class name | |
for i, obj in enumerate(list(table['name'])): | |
coords = [list(table['xmax'])[i], list(table['xmin'])[i], list(table['ymax'])[i], list(table['ymin'])[i]] | |
area = (list(table['xmax'])[i] - list(table['xmin'])[i])*(list(table['ymax'])[i] - list(table['ymin'])[i]) | |
if obj in ad_objs: | |
ad_objs[obj][0] += list(table['confidence'])[i] | |
ad_objs[obj][1] += area | |
ad_objs[obj][2].append(coords) | |
else: | |
ad_objs[obj] = [list(table['confidence'])[i], area, [coords]] | |
for i, obj in enumerate(list(table_all['name'])): | |
coords_all = [list(table_all['xmax'])[i], list(table_all['xmin'])[i], list(table_all['ymax'])[i], list(table_all['ymin'])[i]] | |
area_all = (list(table_all['xmax'])[i] - list(table_all['xmin'])[i])*(list(table_all['ymax'])[i] - list(table_all['ymin'])[i]) | |
if obj in ad_objs: | |
ad_objs[obj][0] += list(table_all['confidence'])[i] | |
ad_objs[obj][1] += area_all | |
ad_objs[obj][2].append(coords_all) | |
else: | |
ad_objs[obj] = [list(table_all['confidence'])[i], area_all, [coords_all]] | |
count = 0 | |
for obj in list(ad_objs.keys()): | |
count += len(ad_objs[obj][2]) | |
return ad_objs, count | |
def ad_word_classes(image, dutch_preposition, stop_words): | |
ad_text_dic = {} | |
text = pytesseract.image_to_string(image) | |
result = re.sub(r'\W+','*',re.sub(r'\d+', '*', text.lower())).split('*')[:-1] | |
for item in result: | |
if item != '': | |
if len(item) > 3: | |
if item not in dutch_preposition and item not in stop_words: | |
if item in ad_text_dic: | |
ad_text_dic[item] += 1 | |
else: | |
ad_text_dic[item] = 1 | |
return ad_text_dic | |
def topic_features(ad_objs, ad_text_dic, dictionary, model, num_topics=20): | |
corpus = [] | |
#Object | |
if len(ad_objs) > 0: | |
for obj in list(ad_objs.keys()): | |
corpus.append((dictionary[obj],len(ad_objs[obj][2]))) | |
#Words | |
if len(ad_text_dic) > 0: | |
for word in list(ad_text_dic.keys()): | |
if word in dictionary: | |
corpus.append((dictionary[word],ad_text_dic[word])) | |
#Topic weights | |
ad_topic_weights = np.zeros(num_topics) | |
aux = np.ones(num_topics) | |
sum = 0 | |
count = 0 | |
for i,w in model[corpus]: | |
aux[i] = 0 | |
ad_topic_weights[i] = w | |
sum += w | |
count += 1 | |
if num_topics-count != 0: | |
ad_topic_weights = ad_topic_weights+(1-sum)/(num_topics-count)*aux | |
return ad_topic_weights | |
def object_and_topic_variables(ad_image, ctpg_image, has_ctpg, dictionary, dutch_preposition, language, model_obj, model_lda, num_topic=20): | |
nltk.download('stopwords') | |
stop_words = stopwords.words(language) | |
#Ad | |
ad_objs, ad_num_objs = ad_object_detection(model_obj, ad_image, crop_dim=600) | |
ad_text_dic = ad_word_classes(ad_image, dutch_preposition, stop_words) | |
ad_topic_weights = topic_features(ad_objs, ad_text_dic, dictionary, model_lda, num_topic) | |
#Counterpage | |
if has_ctpg: | |
ctpg_objs, ctpg_num_objs = ad_object_detection(model_obj, ctpg_image, crop_dim=600) | |
ctpg_text_dic = ad_word_classes(ctpg_image, dutch_preposition, stop_words) | |
ctpg_topic_weights = topic_features(ctpg_objs, ctpg_text_dic, dictionary, model_lda, num_topic) | |
else: | |
ctpg_num_objs = 0 | |
ctpg_topic_weights = np.ones(num_topic)/num_topic | |
#Topic Difference | |
Diff = KL_dist(ad_topic_weights.reshape(1,num_topic), ctpg_topic_weights.reshape(1,num_topic)) | |
return ad_num_objs, ctpg_num_objs, ad_topic_weights, Diff | |
def product_category(): | |
global General_Category | |
categories = np.array(list(General_Category.keys())) | |
five_categories = [] | |
for i in range(len(categories)//5): | |
five_categories.append(list(categories[(5*i):(5*i+5)])) | |
if len(categories)%5 > 0: | |
i = i+1 | |
five_categories.append(list(categories[(5*i):(5*i+5)])) | |
#Create dictionary | |
Name_to_Index_dict = {} | |
for i in range(len(categories)): | |
Name_to_Index_dict[categories[i]] = i | |
#User Questions | |
flag = True | |
while flag: | |
for i, item in enumerate(five_categories): | |
print("list "+str(i+1)+" out of "+str(len(five_categories))) | |
for j, cat in enumerate(item): | |
print(str(j)+": "+cat) | |
choice = input("Please choose the general category. If no good fit, please type N; otherwise, type the numbering: ") | |
if choice == "N": | |
print() | |
continue | |
else: | |
choice = item[int(choice)] | |
break | |
confirm = input("If you have chosen successfully, please type Y or y; otherwise, please type any other key: ") | |
if confirm == 'Y' or confirm == 'y': | |
flag = False | |
else: | |
print('Please choose again.') | |
#Output | |
out = np.zeros(38) | |
out[Name_to_Index_dict[choice]] = 1 | |
return out | |
def Region_Selection(img): | |
As = [] | |
while True: | |
_, _, w, h = cv.selectROI("Select ROI", img, fromCenter=False, showCrosshair=False) | |
As.append(w*h) | |
ans = input("Continue? (y/n) ") | |
if ans == 'n': | |
break | |
A = sum(As) | |
return A | |
def RMSRPD(y_pred, y_true): | |
diff = y_pred - y_true | |
den = 0.5*(np.abs(y_pred) + np.abs(y_true)) | |
return np.sqrt(np.mean((diff/den)**2)) | |
def Caption_Generation(image): #image is a PIL Image object | |
with torch.no_grad(): | |
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, torch_dtype=torch.float16) | |
model = model.to(device='cpu', dtype=torch.float32).eval() | |
# model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16) | |
# model = model.to(device=torch.device("mps"), dtype=torch.float16) | |
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5' | |
# tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5' | |
question = 'Describe the image in a paragraph. Please include details.' | |
msgs = [{'role': 'user', 'content': question}] | |
# curr = [] | |
res = model.chat( | |
image=image, | |
context=None, | |
msgs=msgs, | |
tokenizer=tokenizer, | |
sampling=True, # if sampling=False, beam_search will be used by default | |
temperature=0.7, | |
# system_prompt='' # pass system_prompt if needed | |
) | |
return res[0] | |
def Topic_emb(caption): | |
with torch.no_grad(): | |
model = SentenceTransformer("Magazine_Topic_Embedding_sample_size15").eval() | |
embeddings = model.encode(caption).reshape(1,768) | |
return embeddings |